funpymodeling
funpymodeling copied to clipboard
Encapsulate pairwaise correlation based on MIC statistic
Modify corr_pair
function from funpymodeling in order to handle the correlation based on MIC statistic as it is shown below:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from minepy import MINE
from funpymodeling.exploratory import cat_vars, num_vars
tips = sns.load_dataset('tips')
# Encapsulate from here:
data=tips[num_vars(tips)] # only pre-select numeric variables
data
df_res = pd.DataFrame()
for a,b in col_pairs:
mine = MINE(alpha=0.6, c=15, est="mic_approx")
mine.compute_score(data[a], data[b])
df_res=df_res.append({"v1":a, "v2":b, "mic":mine.mic()}, ignore_index=True)
corr_pair
should support the method='mic'
.