ai-toolkit icon indicating copy to clipboard operation
ai-toolkit copied to clipboard

Flux LoRA training relaunch error when using Automagic Optimizer.

Open AfterHAL opened this issue 1 year ago • 2 comments

This is for bugs only

Did you already ask in the discord? No

You verified that this is a bug and not a feature request or question by asking in the discord? Yes

Describe the bug

I'm trying the Automagic optimizer for a week, and I get this error (KeyError: 'lr_mask') when I restart a Flux LoRA training after a clean stop (ctrl-C).

the training parameters are:

network:
  type: "lora"
  linear: 32
  linear_alpha: 32
  # (no network_kwargs params)
train:
  optimizer: "automagic"
  lr: 1.0e-5 # needed with automagic ?
  optimizer_params:
    min_lr: 1e-6
    max_lr: 1e-4

The error is:

#############################################
# Running job: MaisonClose_L02_AutoM_GAS1
#############################################


Running  1 process
Loading Flux model
Loading transformer
Quantizing transformer
Loading vae
Loading t5
You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers
Downloading shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 3470.67it/s]
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00,  2.30it/s]
Quantizing T5
Loading clip
making pipe
preparing
create LoRA network. base dim (rank): 24, alpha: 24
neuron dropout: p=None, rank dropout: p=None, module dropout: p=None
create LoRA for Text Encoder: 0 modules.
create LoRA for U-Net: 494 modules.
enable LoRA for U-Net
#### IMPORTANT RESUMING FROM output/MaisonClose_L02_AutoM_GAS1/MaisonClose_L02_AutoM_GAS1_000000500.safetensors ####
Loading from output/MaisonClose_L02_AutoM_GAS1/MaisonClose_L02_AutoM_GAS1_000000500.safetensors
Missing keys: []
Found step 500 in metadata, starting from there
Total training paramiters: 128,876,544
Loading optimizer state from output/MaisonClose_L02_AutoM_GAS1/optimizer.pt
Updating optimizer LR from params
Dataset: MaisonCloseSet02
  -  Preprocessing image dimensions
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 835/835 [00:43<00:00, 19.01it/s]
  -  Found 835 images
Bucket sizes for MaisonCloseSet02:
384x576: 835 files
1 buckets made
Dataset: MaisonCloseSet02
  -  Preprocessing image dimensions
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 835/835 [00:00<00:00, 103058.70it/s]
  -  Found 835 images
Bucket sizes for MaisonCloseSet02:
576x896: 835 files
1 buckets made
Dataset: MaisonCloseSet02
  -  Preprocessing image dimensions
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 835/835 [00:00<00:00, 114531.01it/s]
  -  Found 835 images
Bucket sizes for MaisonCloseSet02:
832x1216: 835 files
1 buckets made
MaisonClose_L02_AutoM_GAS1:   2%|█▋                                                                                                 | 500/30000 [00:00<?, ?it/s]Error running job: 'lr_mask'

========================================
Result:
 - 0 completed jobs
 - 1 failure
========================================
Traceback (most recent call last):
  File "/workspace/apps/ai-toolkit0/run.py", line 90, in <module>
    main()
  File "/workspace/apps/ai-toolkit0/run.py", line 86, in main
    raise e
  File "/workspace/apps/ai-toolkit0/run.py", line 78, in main
    job.run()
  File "/mnt/d/TODAI/apps/ai-toolkit0/jobs/ExtensionJob.py", line 22, in run
    process.run()
  File "/mnt/d/TODAI/apps/ai-toolkit0/jobs/process/BaseSDTrainProcess.py", line 1826, in run
    loss_dict = self.hook_train_loop(batch_list)
  File "/mnt/d/TODAI/apps/ai-toolkit0/extensions_built_in/sd_trainer/SDTrainer.py", line 1647, in hook_train_loop
    self.scaler.step(self.optimizer)
  File "/mnt/d/TODAI/apps/ai-toolkit0/venv/lib/python3.10/site-packages/torch/amp/grad_scaler.py", line 457, in step
    retval = self._maybe_opt_step(optimizer, optimizer_state, *args, **kwargs)
  File "/mnt/d/TODAI/apps/ai-toolkit0/venv/lib/python3.10/site-packages/torch/amp/grad_scaler.py", line 352, in _maybe_opt_step
    retval = optimizer.step(*args, **kwargs)
  File "/mnt/d/TODAI/apps/ai-toolkit0/venv/lib/python3.10/site-packages/torch/optim/lr_scheduler.py", line 137, in wrapper
    return func.__get__(opt, opt.__class__)(*args, **kwargs)
  File "/mnt/d/TODAI/apps/ai-toolkit0/venv/lib/python3.10/site-packages/torch/optim/optimizer.py", line 487, in wrapper
    out = func(*args, **kwargs)
  File "/mnt/d/TODAI/apps/ai-toolkit0/venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
  File "/mnt/d/TODAI/apps/ai-toolkit0/toolkit/optimizers/automagic.py", line 249, in step
    lr_mask = state['lr_mask'].to(torch.float32)
KeyError: 'lr_mask'

AfterHAL avatar Dec 16 '24 19:12 AfterHAL

same

za-wa-n-go avatar Feb 26 '25 12:02 za-wa-n-go

I made some adjustments to automagic.py and would like to share them with you:

  • Prevented loss from becoming NaN during training.
  • Ensured the two values in eps are treated as the minimum and maximum, influencing the learning process accordingly.
    • Please note that the handling of 'eps' I mentioned is based on my own assumptions of its ideal behavior, so I apologize if it is not originally intended to work that way.
  • Enabled the ability to resume training.

I have verified the changes, and everything seems to be functioning as expected, with no unusual behavior in the training process.

Please note that I’m not a coder by profession, and these modifications were made with the help of o3-mini-high and Claude sonet3.7.

This is something I have modified to work personally for the time being, but I intend to use the official code once it becomes available.

I appreciate your work and hope these adjustments are helpful.

from collections import OrderedDict
import math
from typing import List
import torch
from toolkit.optimizers.optimizer_utils import Auto8bitTensor, copy_stochastic, stochastic_grad_accummulation
from optimum.quanto import QBytesTensor
import random

class Automagic(torch.optim.Optimizer):
    def __init__(
        self,
        params,
        lr=None,
        min_lr=1e-7,
        max_lr=1e-3,
        lr_pump_scale=1.1,
        lr_dump_scale=0.85,
        eps=(1e-30, 1e-3),
        clip_threshold=1.0,
        decay_rate=-0.8,
        weight_decay=0.0,
        do_paramiter_swapping=False,
        paramiter_swapping_factor=0.1,
    ):
        self.lr = lr
        self.min_lr = min_lr
        self.max_lr = max_lr
        self.lr_pump_scale = lr_pump_scale
        self.lr_dump_scale = lr_dump_scale

        defaults = {
            "lr": lr,
            "eps": eps,
            "clip_threshold": clip_threshold,
            "decay_rate": decay_rate,
            "weight_decay": weight_decay,
        }
        super().__init__(params, defaults)

        self.base_lrs: List[float] = [lr for group in self.param_groups]

        self.is_stochastic_rounding_accumulation = False
        # Setup stochastic grad accumulation hooks
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and param.dtype != torch.float32:
                    self.is_stochastic_rounding_accumulation = True
                    param.register_post_accumulate_grad_hook(stochastic_grad_accummulation)

        self.do_paramiter_swapping = do_paramiter_swapping
        self.paramiter_swapping_factor = paramiter_swapping_factor
        self._total_paramiter_size = 0
        # Count total parameters
        for group in self.param_groups:
            for param in group['params']:
                self._total_paramiter_size += torch.numel(param)
        # Pretty print total parameters with comma separation
        print(f"Total training parameters: {self._total_paramiter_size:,}")

        # Important: Initialize state for all parameters
        for group in self.param_groups:
            for param in group['params']:
                self.initialize_state(param)

        # Enable parameter swapping if necessary
        if self.do_paramiter_swapping:
            self.enable_paramiter_swapping(self.paramiter_swapping_factor)

    def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1):
        self.do_paramiter_swapping = True
        self.paramiter_swapping_factor = paramiter_swapping_factor
        # Call it initially
        self.swap_paramiters()

    def swap_paramiters(self):
        all_params = []
        # Deactivate all parameters
        for group in self.param_groups:
            for param in group['params']:
                param.requires_grad_(False)
                # Remove any gradients
                param.grad = None
                all_params.append(param)
        # Shuffle all parameters
        random.shuffle(all_params)
        # Activate parameters until target number of parameters is reached
        target_paramiters = int(self._total_paramiter_size * self.paramiter_swapping_factor)
        total_paramiters = 0
        for param in all_params:
            total_paramiters += torch.numel(param)
            if total_paramiters >= target_paramiters:
                break
            else:
                param.requires_grad_(True)

    @staticmethod
    def _get_lr(param_group, param_state):
        if 'avg_lr' in param_state:
            lr = param_state["avg_lr"]
        else:
            lr = 0.0
        return lr

    def _get_group_lr(self, group):
        group_lrs = []
        for p in group["params"]:
            group_lrs.append(self._get_lr(group, self.state[p]))
        # Return average
        if len(group_lrs) == 0:
            return self.lr
        return sum(group_lrs) / len(group_lrs)

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    @staticmethod
    def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
        # Copied from fairseq's adafactor implementation:
        # https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    def step_hook(self):
        if not self.is_stochastic_rounding_accumulation:
            return
        # Copy over stochastically rounded gradients
        for group in self.param_groups:
            for param in group['params']:
                if param.requires_grad and hasattr(param, "_accum_grad"):
                    param.grad = param._accum_grad
                    del param._accum_grad

    # adafactor manages its own learning rate
    def get_learning_rates(self):
        lrs = [self._get_group_lr(group) for group in self.param_groups]
        if len(lrs) == 0:
            lrs = self.base_lrs  # if called before stepping
        return lrs

    def get_avg_learning_rate(self):
        lrs = self.get_learning_rates()
        return sum(lrs) / len(lrs)

    def _convert_lr_mask_to_tensor(self, lr_mask, device, shape=None):
        """Helper method to convert lr_mask from various formats to a tensor"""
        if hasattr(lr_mask, 'to'):  # Already a tensor or tensor-like object
            return lr_mask
        
        try:
            if isinstance(lr_mask, dict) and 'quantized' in lr_mask and 'scale' in lr_mask and 'orig_dtype' in lr_mask:
                # Auto8bitTensor format
                return lr_mask['quantized'].to(lr_mask['orig_dtype']) * lr_mask['scale']
            elif isinstance(lr_mask, dict):
                # Some other dictionary format - try to extract values
                values = list(lr_mask.values())
                if isinstance(values[0], (int, float)):
                    return torch.tensor(values, device=device)
            
            # Default fallback - try to convert to tensor directly
            return torch.tensor(lr_mask, device=device)
        except Exception as e:
            print(f"ERROR: Failed to convert lr_mask to tensor: {e}")
            # Return a default tensor as fallback
            if shape is not None:
                return torch.ones(shape, device=device) * self.lr
            else:
                return torch.ones(1, device=device) * self.lr

    def initialize_state(self, p):
        state = self.state[p]
        
        # Basic state initialization
        if "step" not in state:
            state["step"] = 0
        
        # Initialize lr_mask
        if 'lr_mask' not in state:
            state['lr_mask'] = Auto8bitTensor(torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr)
        elif isinstance(state['lr_mask'], dict):
            # Convert from dictionary format to tensor
            try:
                if 'quantized' in state['lr_mask'] and 'scale' in state['lr_mask']:
                    tensor = state['lr_mask']['quantized'].to(
                        state['lr_mask'].get('orig_dtype', torch.float32)
                    ) * state['lr_mask']['scale']
                    state['lr_mask'] = Auto8bitTensor(tensor)
                else:
                    # Fallback
                    state['lr_mask'] = Auto8bitTensor(torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr)
            except Exception as e:
                print(f"Error converting lr_mask: {e}")
                state['lr_mask'] = Auto8bitTensor(torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr)
        
        # Other states
        if 'avg_lr' not in state:
            state['avg_lr'] = self.lr
            
        if 'last_polarity' not in state:
            state['last_polarity'] = torch.zeros(p.shape, dtype=torch.bool, device=p.device)
        
        factored = len(p.shape) >= 2
        if factored:
            if "exp_avg_sq_row" not in state:
                state["exp_avg_sq_row"] = torch.zeros(p.shape[:-1]).to(p)
            if "exp_avg_sq_col" not in state:
                state["exp_avg_sq_col"] = torch.zeros(p.shape[:-2] + p.shape[-1:]).to(p)
        else:
            if "exp_avg_sq" not in state:
                state["exp_avg_sq"] = torch.zeros_like(p)
                
        if "RMS" not in state:
            state["RMS"] = 0

    @torch.no_grad()
    def step(self, closure=None):
        """
        Performs a single optimization step.
        
        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        self.step_hook()
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None or not p.requires_grad:
                    continue

                grad = p.grad
                if grad.dtype != torch.float32:
                    grad = grad.to(torch.float32)
                if grad.is_sparse:
                    raise RuntimeError("Automagic does not support sparse gradients.")

                state = self.state[p]
                
                # Initialize state if not already initialized
                if len(state) == 0 or 'lr_mask' not in state:
                    self.initialize_state(p)
                    
                grad_shape = grad.shape
                factored = len(grad_shape) >= 2

                if factored:
                    state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
                    state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
                else:
                    state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)

                p_data_fp32 = p
                if isinstance(p_data_fp32, QBytesTensor):
                    p_data_fp32 = p_data_fp32.dequantize()
                if p.dtype != torch.float32:
                    p_data_fp32 = p_data_fp32.clone().float()

                state["step"] += 1
                state["RMS"] = self._rms(p_data_fp32)

                beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
                eps = group["eps"]
                # Dynamic setting of eps: if eps is a tuple/list, interpolate based on average lr_mask
                if isinstance(eps, (tuple, list)):
                    eps_min, eps_max = eps
                    
                    # Handle case when lr_mask doesn't exist
                    if 'lr_mask' not in state:
                        state['lr_mask'] = Auto8bitTensor(torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr)
                    
                    # Safe conversion of lr_mask to tensor
                    if not isinstance(state['lr_mask'], torch.Tensor) or not hasattr(state['lr_mask'], 'to'):
                        state['lr_mask'] = self._convert_lr_mask_to_tensor(
                            state['lr_mask'], p.device, shape=p.shape
                        )
                        
                    lr_mask = state['lr_mask'].to(torch.float32)
                    avg_lr_mask = torch.mean(lr_mask)
                    norm = ((avg_lr_mask - self.min_lr) / (self.max_lr - self.min_lr)).clamp(0, 1)
                    eps = eps_min + norm * (eps_max - eps_min)
                update = (grad**2) + eps

                if factored:
                    exp_avg_sq_row = state["exp_avg_sq_row"]
                    exp_avg_sq_col = state["exp_avg_sq_col"]

                    exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
                    exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
                    # Approximate exponential moving average of squared gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state["exp_avg_sq"]
                    exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))

                # Initialize last_polarity if it doesn't exist
                if 'last_polarity' not in state:
                    state['last_polarity'] = torch.zeros(p.shape, dtype=torch.bool, device=p.device)
                
                # Get signs of previous and current updates
                last_polarity = state['last_polarity']
                current_polarity = (update > 0).to(torch.bool)
                sign_agreement = torch.where(last_polarity == current_polarity, 1, -1)
                state['last_polarity'] = current_polarity

                # Initialize lr_mask if it doesn't exist
                if 'lr_mask' not in state:
                    state['lr_mask'] = Auto8bitTensor(torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr)
                
                # Safe handling of lr_mask - ensure it's a tensor
                if not isinstance(state['lr_mask'], torch.Tensor) or not hasattr(state['lr_mask'], 'to'):
                    # print(f"Converting lr_mask: {type(state['lr_mask'])}")
                    state['lr_mask'] = self._convert_lr_mask_to_tensor(
                        state['lr_mask'], p.device, shape=p.shape
                    )
                    
                # Convert lr_mask to float32
                lr_mask = state['lr_mask'].to(torch.float32)

                # Update learning rate mask based on sign agreement
                new_lr = torch.where(
                    sign_agreement > 0,
                    lr_mask * self.lr_pump_scale,  # Increase lr
                    lr_mask * self.lr_dump_scale   # Decrease lr
                )

                # Clip new learning rates to specified bounds
                new_lr = torch.clamp(new_lr, min=self.min_lr, max=self.max_lr)
                # Apply new learning rate mask to update
                update.mul_(new_lr)

                state['lr_mask'] = Auto8bitTensor(new_lr)
                state['avg_lr'] = torch.mean(new_lr)

                if group["weight_decay"] != 0:
                    p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * new_lr))

                p_data_fp32.add_(-update)

                if p.dtype != torch.float32:
                    # Apply stochastic rounding if necessary
                    copy_stochastic(p, p_data_fp32)

        return loss

    # Override the state_dict to save the lr_mask
    def state_dict(self):
        orig_state_dict = super().state_dict()
        new_state = {}
        for p_key, state in orig_state_dict['state'].items():
            save_state = {k: v for k, v in state.items() if k != 'lr_mask'}
            if 'lr_mask' in state:
                if hasattr(state['lr_mask'], 'state_dict'):
                    save_state['lr_mask'] = state['lr_mask'].state_dict()
                elif isinstance(state['lr_mask'], dict):
                    save_state['lr_mask'] = state['lr_mask']
                elif isinstance(state['lr_mask'], torch.Tensor):
                    # Create a dict representation for the tensor
                    save_state['lr_mask'] = {
                        'quantized': state['lr_mask'],
                        'orig_dtype': state['lr_mask'].dtype,
                        'scale': 1.0
                    }
            new_state[p_key] = save_state
        orig_state_dict['state'] = new_state
        return orig_state_dict

    def load_state_dict(self, state_dict):
        # Make a copy to avoid modifying the input
        state_dict_copy = {'param_groups': state_dict['param_groups'], 'state': {}}
        
        # Process state entries
        for p_key, saved_state in state_dict['state'].items():
            state_dict_copy['state'][p_key] = {k: v for k, v in saved_state.items() if k != 'lr_mask'}
            
            # Find matching parameter in current optimizer
            param_found = False
            for group in self.param_groups:
                for p in group['params']:
                    if str(id(p)) == str(p_key) or id(p) == p_key:
                        param_found = True
                        # Handle lr_mask separately
                        if 'lr_mask' in saved_state:
                            try:
                                if isinstance(saved_state['lr_mask'], dict) and 'quantized' in saved_state['lr_mask']:
                                    tensor = saved_state['lr_mask']['quantized'].to(
                                        saved_state['lr_mask'].get('orig_dtype', torch.float32)
                                    ) * saved_state['lr_mask'].get('scale', 1.0)
                                    self.state[p]['lr_mask'] = Auto8bitTensor(tensor)
                                elif isinstance(saved_state['lr_mask'], torch.Tensor):
                                    self.state[p]['lr_mask'] = Auto8bitTensor(saved_state['lr_mask'])
                            except Exception as e:
                                print(f"Error loading lr_mask: {e}")
                                # Initialize with default
                                self.state[p]['lr_mask'] = Auto8bitTensor(
                                    torch.ones(p.shape).to(p.device, dtype=torch.float32) * self.lr
                                )
                        break
                if param_found:
                    break
                    
        # Load the processed state dict
        super().load_state_dict(state_dict_copy)

za-wa-n-go avatar Mar 14 '25 00:03 za-wa-n-go