anomalib
anomalib copied to clipboard
[Bug]: Can't download efficientAD pretrained weights
Describe the bug
Hi. I currently reinstalled anomalib and used '001_getting_started.ipynb' code. When I use EfficientAD, the downloading process does not work at all. I tested it to another local set pc and it also got the same errors.
Dataset
MVTec
Model
Other (please specify in the field below)
Steps to reproduce the behavior
- Use '001_getting_started'
- use Colab with A100
- change model to 'EfficientAD()' and set train_batch = 1, eval_batch = 16
- can't download pretrained weights
OS information
anomalib = 1.2.0 dev google colab python = 3.10
Expected behavior
Expected to download pretrained weights but failled.
Screenshots
Pip/GitHub
GitHub
What version/branch did you use?
No response
Configuration YAML
Just use default settings
Logs
Trainable params: 8.1 M
Non-trainable params: 0
Total params: 8.1 M
Total estimated model params size (MB): 32
/usr/local/lib/python3.10/dist-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.
/usr/local/lib/python3.10/dist-packages/lightning/pytorch/trainer/connectors/data_connector.py:424: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
efficientad_pretrained_weights.zip: 0.00B [00:00, ?B/s]
---------------------------------------------------------------------------
RecursionError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/rich/console.py in print(self, sep, end, style, justify, overflow, no_wrap, emoji, markup, highlight, width, height, crop, soft_wrap, new_line_start, *objects)
1673 with self:
-> 1674 renderables = self._collect_renderables(
1675 objects,
37 frames
RecursionError: maximum recursion depth exceeded while calling a Python object
During handling of the above exception, another exception occurred:
RecursionError Traceback (most recent call last)
... last 10 frames repeated, from the frame below ...
/usr/local/lib/python3.10/dist-packages/rich/file_proxy.py in flush(self)
51 output = "".join(self.__buffer)
52 if output:
---> 53 self.__console.print(output)
54 del self.__buffer[:]
55
RecursionError: maximum recursion depth exceeded while calling a Python object
Code of Conduct
- [X] I agree to follow this project's Code of Conduct