anomalib
anomalib copied to clipboard
[Bug]: Center Cropped gets weird visualize outputs
Describe the bug
I am currently using custom dataset to detect anomaly in belt.
Dataset
Folder
Model
PADiM
Steps to reproduce the behavior
- Use custom dataset
- Resize image to 800x1600
- Center cropped 720x620
- Export by Openvino
- load Openvino then predict
- Use anomalib Visualizer
OS information
OS information:
- OS: Windows
- Python version: 3.8.13
- Anomalib version: latests
Expected behavior
Outputs masks are weird and not matched to the original input image. Expected to be matched well or input would also get modified.
Screenshots
Pip/GitHub
pip
What version/branch did you use?
No response
Configuration YAML
dataset:
name: belt_1026_0
root: ./datasets
format : folder
task: classification
normal_dir : belt_1026/ok_split/90
abnormal_dir : belt_1026/ng_split/90
mask : null
normal_test_dir : null
train_batch_size: 32
eval_batch_size: 32
extensions : null
num_workers: 8
image_size: [875,1600] # dimensions to which images are resized (mandatory)
center_crop: [720,670] # dimensions to which images are center-cropped after resizing (optional)
normalization: imagenet # data distribution to which the images will be normalized: [none, imagenet]
transform_config:
train: null
eval: null
test_split_mode: from_dir # options: [from_dir, synthetic]
test_split_ratio: 0.2 # fraction of train images held out testing (usage depends on test_split_mode)
val_split_mode: same_as_test # options: [same_as_test, from_test, synthetic]
val_split_ratio: 0.5 # fraction of train/test images held out for validation (usage depends on val_split_mode)
tiling:
apply: false
tile_size: 800
stride: 800
remove_border_count: 0
use_random_tiling: false
random_tile_count: 16
model:
name: padim
backbone: resnet18
pre_trained: true
layers:
- layer1
- layer2
- layer3
normalization_method: min_max # options: [none, min_max, cdf]
metrics:
image:
- F1Score
- AUROC
pixel:
- F1Score
- AUROC
threshold:
method: adaptive #options: [adaptive, manual]
visualization:
show_images: False # show images on the screen
save_images: False # save images to the file system
log_images: False # log images to the available loggers (if any)
image_save_path: null # path to which images will be saved
mode: simple # options: ["full", "simple"]
project:
seed: 42
path: ./results/10_26_model_90
logging:
logger: [] # options: [comet, tensorboard, wandb, csv] or combinations.
log_graph: false # Logs the model graph to respective logger.
optimization:
export_mode: openvino # options: torch, onnx, openvino
# PL Trainer Args. Don't add extra parameter here.
trainer:
enable_checkpointing: true
default_root_dir: null
gradient_clip_val: 0
gradient_clip_algorithm: norm
num_nodes: 1
devices: 1
enable_progress_bar: true
overfit_batches: 0.0
track_grad_norm: -1
check_val_every_n_epoch: 1 # Don't validate before extracting features.
fast_dev_run: false
accumulate_grad_batches: 1
max_epochs: 1
min_epochs: null
max_steps: -1
min_steps: null
max_time: null
limit_train_batches: 1.0
limit_val_batches: 1.0
limit_test_batches: 1.0
limit_predict_batches: 1.0
val_check_interval: 1.0 # Don't validate before extracting features.
log_every_n_steps: 50
accelerator: auto # <"cpu", "gpu", "tpu", "ipu", "hpu", "auto">
strategy: null
sync_batchnorm: false
precision: 32
enable_model_summary: true
num_sanity_val_steps: 0
profiler: null
benchmark: false
deterministic: false
reload_dataloaders_every_n_epochs: 0
auto_lr_find: false
replace_sampler_ddp: true
detect_anomaly: false
auto_scale_batch_size: false
plugins: null
move_metrics_to_cpu: false
multiple_trainloader_mode: max_size_cycle
Logs
No logs
Code of Conduct
- [X] I agree to follow this project's Code of Conduct