dpcreator
dpcreator copied to clipboard
Integrate: answer to question "can observations be made public" into preprocessors and release text
- [ ] 1. create a checklist table of current stats and if/how the computation changes when the # of observations cannot be made public
See google doc: https://docs.google.com/document/d/1xUihcjh4zmfnhG0-2EC-uG-qzpde8WXphRksB0NvHe8/edit#
(Redo steps below after doc discussion)
- [ ] ~~2. update the StatSpec class (stat_spec.py) to include a variable indicating
is_dataset_size_public
~~ - [ ] ~~3. ^ update the computation chains for existing stats appropriately.~~
- [ ] ~~e.g. if the
is_dataset_size_public == True
, update the chain, use a different chain, etc.~~ - [ ] ~~include tests for each stat. (Check taht if the dataset size is private then more epsilon is used, etc.~~
- [ ] ~~e.g. if the
- [ ] ~~4. Integrate into larger workflow. e.g.
ValidateReleaseUtil.build_stat_specs()
~~- ~~
ValidateReleaseUtil.__init__
: add self.is_dataset_size_public = None~~ - ~~
ValidateReleaseUtil.run_preliminary_steps
: set self.is_dataset_size_public to True or False~~ - ~~Add function
DatasetInfo.is_dataset_size_public()
~~- ~~similar to
get_dataset_size()
~~ - ~~except finds answer to the dataset question within
DepositorSetupInfo
~~
- ~~similar to
- ~~
ValidateReleaseUtil.build_stat_specs()
, userself.is_dataset_size_public
when building the StatSpec objects~~
- ~~