'magic-pdf' 不是内部或外部命令,也不是可运行的程序 或批处理文件。
Description of the bug | 错误描述
虽然我按教程部署了虚拟环境以及下载了对应的模型文件等并配置好 但是命令行操作模式并不可用;也无法使用magic-pdf --version等命令查看;然而我运行示例demo.py文件是可以正常运行并输出预期md文件的 是我需要对环境变量等什么修改吗?
How to reproduce the bug | 如何复现
(MinerU) C:\Users\rgthx\Downloads\MinerU-master\MinerU-master\demo>python demo.py 2024-08-06 00:07:26.246 | INFO | magic_pdf.libs.pdf_check:detect_invalid_chars:57 - cid_count: 9, text_len: 33962, cid_chars_radio: 0.00026542408871062874 INFO:datasets:PyTorch version 2.3.1 available. 2024-08-06 00:07:35.988 | INFO | magic_pdf.model.pdf_extract_kit:init:99 - DocAnalysis init, this may take some times. apply_layout: True, apply_formula: True, apply_ocr: False 2024-08-06 00:07:35.989 | INFO | magic_pdf.model.pdf_extract_kit:init:107 - using device: cpu 2024-08-06 00:07:35.989 | INFO | magic_pdf.model.pdf_extract_kit:init:109 - using models_dir: D:/Anaconda/envs/MinerU/models CustomVisionEncoderDecoderModel init CustomMBartForCausalLM init CustomMBartDecoder init [08/06 00:07:45 detectron2]: Rank of current process: 0. World size: 1 [08/06 00:07:45 detectron2]: Environment info:
sys.platform win32
Python 3.10.14 | packaged by Anaconda, Inc. | (main, May 6 2024, 19:44:50) [MSC v.1916 64 bit (AMD64)]
numpy 1.26.4
detectron2 0.6 @C:\Users\rgthx\AppData\Roaming\Python\Python310\site-packages\detectron2
Compiler MSVC 194033811
CUDA compiler not available
DETECTRON2_ENV_MODULE
PyTorch built with:
- C++ Version: 201703
- MSVC 192930154
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.6 (Git Hash 86e6af5974177e513fd3fee58425e1063e7f1361)
- OpenMP 2019
- LAPACK is enabled (usually provided by MKL)
- CPU capability usage: AVX2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /Zc:__cplusplus /bigobj /FS /utf-8 -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE /wd4624 /wd4068 /wd4067 /wd4267 /wd4661 /wd4717 /wd4244 /wd4804 /wd4273, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.3.1, USE_CUDA=0, USE_CUDNN=OFF, USE_CUSPARSELT=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
[08/06 00:07:45 detectron2]: Command line arguments: {'config_file': 'C:\Users\rgthx\AppData\Roaming\Python\Python310\site-packages\magic_pdf\resources\model_config\layoutlmv3\layoutlmv3_base_inference.yaml', 'resume': False, 'eval_only': False, 'num_gpus': 1, 'num_machines': 1, 'machine_rank': 0, 'dist_url': 'tcp://127.0.0.1:57823', 'opts': ['MODEL.WEIGHTS', 'D:/Anaconda/envs/MinerU/models\Layout/model_final.pth']} [08/06 00:07:45 detectron2]: Contents of args.config_file=C:\Users\rgthx\AppData\Roaming\Python\Python310\site-packages\magic_pdf\resources\model_config\layoutlmv3\layoutlmv3_base_inference.yaml: AUG: DETR: true CACHE_DIR: ~/cache/huggingface CUDNN_BENCHMARK: false DATALOADER: ASPECT_RATIO_GROUPING: true FILTER_EMPTY_ANNOTATIONS: false NUM_WORKERS: 4 REPEAT_THRESHOLD: 0.0 SAMPLER_TRAIN: TrainingSampler DATASETS: PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 PROPOSAL_FILES_TEST: [] PROPOSAL_FILES_TRAIN: [] TEST:
- scihub_train TRAIN:
- scihub_train
GLOBAL:
HACK: 1.0
ICDAR_DATA_DIR_TEST: ''
ICDAR_DATA_DIR_TRAIN: ''
INPUT:
CROP:
ENABLED: true
SIZE:
- 384
- 600 TYPE: absolute_range FORMAT: RGB MASK_FORMAT: polygon MAX_SIZE_TEST: 1333 MAX_SIZE_TRAIN: 1333 MIN_SIZE_TEST: 800 MIN_SIZE_TRAIN:
- 480
- 512
- 544
- 576
- 608
- 640
- 672
- 704
- 736
- 768
- 800
MIN_SIZE_TRAIN_SAMPLING: choice
RANDOM_FLIP: horizontal
MODEL:
ANCHOR_GENERATOR:
ANGLES:
-
- -90
- 0
- 90 ASPECT_RATIOS:
-
- 0.5
- 1.0
- 2.0 NAME: DefaultAnchorGenerator OFFSET: 0.0 SIZES:
-
- 32
-
- 64
-
- 128
-
- 256
-
- 512 BACKBONE: FREEZE_AT: 2 NAME: build_vit_fpn_backbone CONFIG_PATH: '' DEVICE: cuda FPN: FUSE_TYPE: sum IN_FEATURES:
- layer3
- layer5
- layer7
- layer11 NORM: '' OUT_CHANNELS: 256 IMAGE_ONLY: true KEYPOINT_ON: false LOAD_PROPOSALS: false MASK_ON: true META_ARCHITECTURE: VLGeneralizedRCNN PANOPTIC_FPN: COMBINE: ENABLED: true INSTANCES_CONFIDENCE_THRESH: 0.5 OVERLAP_THRESH: 0.5 STUFF_AREA_LIMIT: 4096 INSTANCE_LOSS_WEIGHT: 1.0 PIXEL_MEAN:
-
- 127.5
- 127.5
- 127.5 PIXEL_STD:
- 127.5
- 127.5
- 127.5
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: RPN
RESNETS:
DEFORM_MODULATED: false
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE:
- false
- false
- false
- false DEPTH: 50 NORM: FrozenBN NUM_GROUPS: 1 OUT_FEATURES:
- res4 RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: true WIDTH_PER_GROUP: 64 RETINANET: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0 FOCAL_LOSS_ALPHA: 0.25 FOCAL_LOSS_GAMMA: 2.0 IN_FEATURES:
- p3
- p4
- p5
- p6
- p7 IOU_LABELS:
- 0
- -1
- 1 IOU_THRESHOLDS:
- 0.4
- 0.5 NMS_THRESH_TEST: 0.5 NORM: '' NUM_CLASSES: 10 NUM_CONVS: 4 PRIOR_PROB: 0.01 SCORE_THRESH_TEST: 0.05 SMOOTH_L1_LOSS_BETA: 0.1 TOPK_CANDIDATES_TEST: 1000 ROI_BOX_CASCADE_HEAD: BBOX_REG_WEIGHTS:
-
- 10.0
- 10.0
- 5.0
- 5.0
-
- 20.0
- 20.0
- 10.0
- 10.0
-
- 30.0
- 30.0
- 15.0
- 15.0 IOUS:
- 0.5
- 0.6
- 0.7 ROI_BOX_HEAD: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS:
- 10.0
- 10.0
- 5.0
- 5.0 CLS_AGNOSTIC_BBOX_REG: true CONV_DIM: 256 FC_DIM: 1024 NAME: FastRCNNConvFCHead NORM: '' NUM_CONV: 0 NUM_FC: 2 POOLER_RESOLUTION: 7 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 SMOOTH_L1_BETA: 0.0 TRAIN_ON_PRED_BOXES: false ROI_HEADS: BATCH_SIZE_PER_IMAGE: 512 IN_FEATURES:
- p2
- p3
- p4
- p5 IOU_LABELS:
- 0
- 1 IOU_THRESHOLDS:
- 0.5 NAME: CascadeROIHeads NMS_THRESH_TEST: 0.5 NUM_CLASSES: 10 POSITIVE_FRACTION: 0.25 PROPOSAL_APPEND_GT: true SCORE_THRESH_TEST: 0.05 ROI_KEYPOINT_HEAD: CONV_DIMS:
- 512
- 512
- 512
- 512
- 512
- 512
- 512
- 512 LOSS_WEIGHT: 1.0 MIN_KEYPOINTS_PER_IMAGE: 1 NAME: KRCNNConvDeconvUpsampleHead NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true NUM_KEYPOINTS: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 ROI_MASK_HEAD: CLS_AGNOSTIC_MASK: false CONV_DIM: 256 NAME: MaskRCNNConvUpsampleHead NORM: '' NUM_CONV: 4 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 RPN: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0 BOUNDARY_THRESH: -1 CONV_DIMS:
- -1 HEAD_NAME: StandardRPNHead IN_FEATURES:
- p2
- p3
- p4
- p5
- p6 IOU_LABELS:
- 0
- -1
- 1 IOU_THRESHOLDS:
- 0.3
- 0.7 LOSS_WEIGHT: 1.0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 1000 PRE_NMS_TOPK_TRAIN: 2000 SMOOTH_L1_BETA: 0.0 SEM_SEG_HEAD: COMMON_STRIDE: 4 CONVS_DIM: 128 IGNORE_VALUE: 255 IN_FEATURES:
- p2
- p3
- p4
- p5 LOSS_WEIGHT: 1.0 NAME: SemSegFPNHead NORM: GN NUM_CLASSES: 10 VIT: DROP_PATH: 0.1 IMG_SIZE:
- 224
- 224 NAME: layoutlmv3_base OUT_FEATURES:
- layer3
- layer5
- layer7
- layer11 POS_TYPE: abs WEIGHTS: OUTPUT_DIR: SCIHUB_DATA_DIR_TRAIN: ~/publaynet/layout_scihub/train SEED: 42 SOLVER: AMP: ENABLED: true BACKBONE_MULTIPLIER: 1.0 BASE_LR: 0.0002 BIAS_LR_FACTOR: 1.0 CHECKPOINT_PERIOD: 2000 CLIP_GRADIENTS: CLIP_TYPE: full_model CLIP_VALUE: 1.0 ENABLED: true NORM_TYPE: 2.0 GAMMA: 0.1 GRADIENT_ACCUMULATION_STEPS: 1 IMS_PER_BATCH: 32 LR_SCHEDULER_NAME: WarmupCosineLR MAX_ITER: 20000 MOMENTUM: 0.9 NESTEROV: false OPTIMIZER: ADAMW REFERENCE_WORLD_SIZE: 0 STEPS:
- 10000
WARMUP_FACTOR: 0.01
WARMUP_ITERS: 333
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.05
WEIGHT_DECAY_BIAS: null
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: false
FLIP: true
MAX_SIZE: 4000
MIN_SIZES:
- 400
- 500
- 600
- 700
- 800
- 900
- 1000
- 1100
- 1200 DETECTIONS_PER_IMAGE: 100 EVAL_PERIOD: 1000 EXPECTED_RESULTS: [] KEYPOINT_OKS_SIGMAS: [] PRECISE_BN: ENABLED: false NUM_ITER: 200 VERSION: 2 VIS_PERIOD: 0
[08/06 00:07:46 d2.checkpoint.detection_checkpoint]: [DetectionCheckpointer] Loading from D:/Anaconda/envs/MinerU/models\Layout/model_final.pth ... [08/06 00:07:46 fvcore.common.checkpoint]: [Checkpointer] Loading from d:/Anaconda/envs/MinerU/models\Layout/model_final.pth ... 2024-08-06 00:07:47.665 | INFO | magic_pdf.model.pdf_extract_kit:init:132 - DocAnalysis init done! 2024-08-06 00:07:47.666 | INFO | magic_pdf.model.doc_analyze_by_custom_model:custom_model_init:92 - model init cost: 21.418904542922974 2024-08-06 00:08:02.520 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 14.49
0: 1888x1408 7 embeddings, 5043.3ms Speed: 27.0ms preprocess, 5043.3ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:08:14.034 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 7, mfr time: 4.14 2024-08-06 00:08:35.911 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 21.88
0: 1888x1408 3 embeddings, 6740.8ms Speed: 28.5ms preprocess, 6740.8ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:08:46.955 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 3, mfr time: 4.25 2024-08-06 00:09:16.613 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 29.66
0: 1888x1408 18 embeddings, 2 isolateds, 6887.6ms Speed: 26.2ms preprocess, 6887.6ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:09:34.476 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 20, mfr time: 10.83 2024-08-06 00:09:49.655 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 15.18
0: 1888x1408 32 embeddings, 4 isolateds, 3605.5ms Speed: 24.7ms preprocess, 3605.5ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:10:25.533 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 36, mfr time: 32.08 2024-08-06 00:10:53.225 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 27.69
0: 1888x1408 7 embeddings, 1 isolated, 5715.7ms Speed: 30.6ms preprocess, 5715.7ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:11:11.822 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 8, mfr time: 12.79 2024-08-06 00:11:39.676 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 27.85
0: 1888x1408 6 embeddings, 5515.7ms Speed: 26.1ms preprocess, 5515.7ms inference, 2.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:11:50.873 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 6, mfr time: 5.62 2024-08-06 00:12:18.559 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 27.69
0: 1888x1408 20 embeddings, 5642.8ms Speed: 27.1ms preprocess, 5642.8ms inference, 2.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:12:41.888 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 20, mfr time: 17.55 2024-08-06 00:12:57.379 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 15.49
0: 1888x1408 7 embeddings, 4560.2ms Speed: 15.2ms preprocess, 4560.2ms inference, 2.2ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:13:05.562 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 7, mfr time: 3.57 2024-08-06 00:13:22.253 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 16.69
0: 1888x1408 15 embeddings, 4624.4ms Speed: 26.3ms preprocess, 4624.4ms inference, 1.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:13:34.929 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 15, mfr time: 7.94 2024-08-06 00:13:51.540 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 16.61
0: 1888x1408 1 embedding, 6940.7ms Speed: 25.4ms preprocess, 6940.7ms inference, 2.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:14:00.052 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 1, mfr time: 1.54 2024-08-06 00:14:27.619 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 27.57
0: 1888x1408 4 embeddings, 5760.3ms Speed: 29.9ms preprocess, 5760.3ms inference, 1.4ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:14:38.158 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 4, mfr time: 4.72 2024-08-06 00:15:04.580 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 26.42
0: 1888x1408 1 embedding, 3774.9ms Speed: 25.6ms preprocess, 3774.9ms inference, 0.0ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:15:09.153 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 1, mfr time: 0.77 2024-08-06 00:15:24.270 | INFO | magic_pdf.model.pdf_extract_kit:call:143 - layout detection cost: 15.12
0: 1888x1408 (no detections), 5563.2ms Speed: 26.3ms preprocess, 5563.2ms inference, 1.3ms postprocess per image at shape (1, 3, 1888, 1408) 2024-08-06 00:15:29.863 | INFO | magic_pdf.model.pdf_extract_kit:call:173 - formula nums: 0, mfr time: 0.0 2024-08-06 00:15:29.865 | INFO | magic_pdf.model.doc_analyze_by_custom_model:doc_analyze:118 - doc analyze cost: 461.83641028404236 2024-08-06 00:15:33.156 | INFO | magic_pdf.pipe.UNIPipe:pipe_mk_markdown:48 - uni_pipe mk mm_markdown finished
(MinerU) C:\Users\rgthx\Downloads\MinerU-master\MinerU-master\demo>magic-pdf --help 'magic-pdf' 不是内部或外部命令,也不是可运行的程序 或批处理文件。
Operating system | 操作系统
Windows
Python version | Python 版本
3.10
Software version | 软件版本 (magic-pdf --version)
0.6.x
Device mode | 设备模式
cpu
pip list看看有没有安装magic-pdf的包?
使用pip list列出的列表如下图,里面是有magic-pdf的包的(不然demo.py也跑不起来) ` C:\Users\rgthx>conda activate MinerU
(MinerU) C:\Users\rgthx>pip list Package Version
absl-py 2.1.0 aiohappyeyeballs 2.3.4 aiohttp 3.10.1 aiosignal 1.3.1 albucore 0.0.13 albumentations 1.4.12 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 anyio 4.4.0 astor 0.8.1 async-timeout 4.0.3 attrdict 2.0.1 attrs 24.1.0 Babel 2.15.0 bce-python-sdk 0.9.19 beautifulsoup4 4.12.3 black 24.8.0 blinker 1.8.2 boto3 1.34.153 botocore 1.34.153 braceexpand 0.1.7 Brotli 1.1.0 cachetools 5.4.0 certifi 2024.7.4 cffi 1.16.0 charset-normalizer 3.3.2 click 8.1.7 cloudpickle 3.0.0 colorama 0.4.6 colorlog 6.8.2 contourpy 1.2.1 cryptography 43.0.0 cssselect 1.2.0 cssutils 2.11.1 cycler 0.12.1 Cython 3.0.11 datasets 2.20.0 decorator 5.1.1 detectron2 0.6 dill 0.3.8 et-xmlfile 1.1.0 eva-decord 0.6.1 eval_type_backport 0.2.0 evaluate 0.4.2 exceptiongroup 1.2.2 fairscale 0.4.13 fast-langdetect 0.2.0 fasttext-wheel 0.9.2 filelock 3.15.4 fire 0.6.0 Flask 3.0.3 flask-babel 4.0.0 fonttools 4.53.1 frozenlist 1.4.1 fsspec 2024.5.0 ftfy 6.2.0 future 1.0.0 fvcore 0.1.5.post20221221 grpcio 1.65.4 h11 0.14.0 httpcore 1.0.5 httpx 0.27.0 huggingface-hub 0.24.5 hydra-core 1.3.2 idna 3.7 imageio 2.34.2 imgaug 0.4.0 intel-openmp 2021.4.0 iopath 0.1.9 itsdangerous 2.2.0 Jinja2 3.1.4 jmespath 1.0.1 joblib 1.4.2 kiwisolver 1.4.5 langdetect 1.0.9 lazy_loader 0.4 lmdb 1.5.1 loguru 0.7.2 lxml 5.2.2 magic-pdf 0.6.2b1 Markdown 3.6 MarkupSafe 2.1.5 matplotlib 3.9.0 mkl 2021.4.0 more-itertools 10.3.0 mpmath 1.3.0 multidict 6.0.5 multiprocess 0.70.16 mypy-extensions 1.0.0 networkx 3.3 numpy 1.26.4 omegaconf 2.3.0 opencv-contrib-python 4.6.0.66 opencv-python 4.6.0.66 opencv-python-headless 4.10.0.84 openpyxl 3.1.5 opt-einsum 3.3.0 packaging 24.1 paddleocr 2.7.3 paddlepaddle 2.6.1 pandas 2.2.2 pathspec 0.12.1 pdf2docx 0.5.8 pdfminer.six 20231228 pillow 10.4.0 pip 24.0 platformdirs 4.2.2 portalocker 2.10.1 premailer 3.10.0 protobuf 3.20.2 psutil 6.0.0 py-cpuinfo 9.0.0 pyarrow 17.0.0 pyarrow-hotfix 0.6 pybind11 2.13.1 pyclipper 1.3.0.post5 pycocotools 2.0.8 pycparser 2.22 pycryptodome 3.20.0 pydantic 2.8.2 pydantic_core 2.20.1 PyMuPDF 1.24.9 PyMuPDFb 1.24.9 pyparsing 3.1.2 python-dateutil 2.9.0.post0 python-docx 1.1.2 pytz 2024.1 pywin32 306 PyYAML 6.0.1 rapidfuzz 3.9.5 rarfile 4.2 regex 2024.7.24 requests 2.32.3 robust-downloader 0.0.2 s3transfer 0.10.2 safetensors 0.4.4 scikit-image 0.24.0 scikit-learn 1.5.1 scipy 1.14.0 seaborn 0.13.2 setuptools 72.1.0 shapely 2.0.5 six 1.16.0 sniffio 1.3.1 soupsieve 2.5 sympy 1.13.1 tabulate 0.9.0 tbb 2021.13.0 tensorboard 2.17.0 tensorboard-data-server 0.7.2 termcolor 2.4.0 threadpoolctl 3.5.0 tifffile 2024.7.24 timm 0.9.16 tokenizers 0.19.1 tomli 2.0.1 torch 2.3.1 torchtext 0.18.0 torchvision 0.18.1 tqdm 4.66.5 transformers 4.40.0 typing_extensions 4.12.2 tzdata 2024.1 ultralytics 8.2.73 ultralytics-thop 2.0.0 unimernet 0.1.6 urllib3 2.2.2 visualdl 2.5.3 Wand 0.6.13 wcwidth 0.2.13 webdataset 0.2.86 Werkzeug 3.0.3 wheel 0.43.0 win32-setctime 1.1.0 wordninja 2.0.0 xxhash 3.4.1 yacs 0.1.8 yarl 1.9.4
(MinerU) C:\Users\rgthx>magic-pdf -v 'magic-pdf' 不是内部或外部命令,也不是可运行的程序 或批处理文件。
(MinerU) C:\Users\rgthx> `
抱歉,解决了 解决方法是在管理员权限下的Anaconda prompt内激活对应虚拟环境并配置 我之前是直接终端内激活的环境;pip默认下载到了c盘里 参考:https://blog.csdn.net/m0_65634471/article/details/130297467