mmsegmentation icon indicating copy to clipboard operation
mmsegmentation copied to clipboard

Unable to resume training

Open sparshgarg23 opened this issue 1 year ago • 8 comments

Thanks for your error report and we appreciate it a lot.

Checklist

  1. I have searched related issues but cannot get the expected help.
  2. The bug has not been fixed in the latest version.

Describe the bug A clear and concise description of what the bug is.

Reproduction

  1. What command or script did you run?

!python tools/train.py /content/mmsegmentation/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py --resume /content/mmsegmentation/checkpoints/iter_48000.pth


2. Did you make any modifications on the code or config? Did you understand what you have modified?
no
3. What dataset did you use?
ADE20K
**Environment**
sys.platform: linux
Python: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: Tesla V100-SXM2-16GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 12.2, V12.2.140
GCC: x86_64-linux-gnu-gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 2.1.1+cu121
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 12.1
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.9.2
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=8.9.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

TorchVision: 0.16.1+cu121
OpenCV: 4.8.0
MMEngine: 0.10.3
MMSegmentation: 1.2.2+b040e14


**Error traceback**

If applicable, paste the error trackback here.

usage: train.py [-h] [--work-dir WORK_DIR] [--resume] [--amp] [--cfg-options CFG_OPTIONS [CFG_OPTIONS ...]] [--launcher {none,pytorch,slurm,mpi}] [--local_rank LOCAL_RANK] config train.py: error: unrecognized arguments: /content/mmsegmentation/checkpoints/iter_48000.pth



sparshgarg23 avatar Apr 12 '24 18:04 sparshgarg23

not sure why it's giving me unrecognized argument error.I tried resuming on dab_detr mmdetection and mmdetection3d and was able to resume training.

I know you guys are busy but would appreciate some insights into this.

sparshgarg23 avatar Apr 12 '24 18:04 sparshgarg23

not sure why it's giving me unrecognized argument error.I tried resuming on dab_detr mmdetection and mmdetection3d and was able to resume training.

I know you guys are busy but would appreciate some insights into this.

The 'resume' accepts a boolean type, meaning whether to resume training based on records, rather than accepting a string address of a model.

Zoulinx avatar Apr 18 '24 01:04 Zoulinx

thanks for replying.In order to resume ,i am assuming that I should have the working directory folder with all the contents such as log file,scalar.json as well as the previous checkpoint?

sparshgarg23 avatar Apr 18 '24 02:04 sparshgarg23

is the issue solved ? , how to resume and pass the checkpoint ?

Md-Sayeed-Khan avatar Jul 16 '24 06:07 Md-Sayeed-Khan

问题解决了吗?如何恢复并通过检查点?

在配置文件里添加 load_from = 'your_pth.pth' 然后在命令行里指定 --resume

AI-Tianlong avatar Jul 23 '24 09:07 AI-Tianlong