Problem encountered when using fast-scnn
Thanks for your error report and we appreciate it a lot.
Checklist
- I have searched related issues but cannot get the expected help.
- The bug has not been fixed in the latest version.
Describe the bug I try to build the config file of the fast-fscnn with rescuenet dataset, but when calculating accuracy, I encountered a CUDA error. What confuses me is that using the same dataset, I use the same method to build the config files of deeplabv3p, pspnet and mobilenetv3 ,they can all be executes successfully.
Reproduction
-
What command or script did you run?
python tools/train.py my_configs/rescuenet_fast-scnn.py -
Did you make any modifications on the code or config? Did you understand what you have modified? The following is the files I wrote myself, I have not modified the relevant config files of fast-scnn. ./configs/base/datasets/rescuenet.py
./mmseg/datasets/rescuenet.py
./my_configs/config.py
- What dataset did you use? Rescuenet dataset, a post-disaster UAV dataset. I converted the dataset into the following file structure, and converted them all into a size of 3000 * 4000 (H * W). https://www.kaggle.com/datasets/yaroslavchyrko/rescuenet 📁 RescueNet/ ├─📁 ann_dir/ │ ├─📁 test/ │ ├─📁 train/ │ └─📁 val/ ├─📁 img_dir/ │ ├─📁 test/ │ ├─📁 train/ │ └─📁 val/ └─📄 RescueNet-DATASET-VERSION-NOTE-v1.0.txt
Environment
- Please run
python mmseg/utils/collect_env.pyto collect necessary environment information and paste it here.
sys.platform: linux Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0] CUDA available: True numpy_random_seed: 2147483648 GPU 0: Tesla P100-PCIE-16GB CUDA_HOME: /data/CUDA/cuda-11.7 NVCC: Cuda compilation tools, release 11.7, V11.7.64 GCC: gcc (GCC) 5.4.0 PyTorch: 1.10.1+cu113 PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.2
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.11.2+cu113 OpenCV: 4.8.0 MMEngine: 0.8.4 MMSegmentation: 1.1.1+30a3f94
- You may add addition that may be helpful for locating the problem, such as
- How you installed PyTorch [e.g., pip, conda, source]
- Other environment variables that may be related (such as
$PATH,$LD_LIBRARY_PATH,$PYTHONPATH, etc.)
The configuration method is as follow:
https://github.com/TommyZihao/MMSegmentation_Tutorials/blob/main/20230816/%E3%80%90A1%E3%80%91%E5%AE%89%E8%A3%85%E9%85%8D%E7%BD%AEMMSegmentation.ipynb
Error traceback
If applicable, paste the error trackback here.
Traceback (most recent call last):
File "tools/train.py", line 104, in <module>
main()
File "tools/train.py", line 100, in main
runner.train()
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/mmengine/runner/runner.py", line 1745, in train
model = self.train_loop.run() # type: ignore
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/mmengine/runner/loops.py", line 278, in run
self.run_iter(data_batch)
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/mmengine/runner/loops.py", line 302, in run_iter
data_batch, optim_wrapper=self.runner.optim_wrapper)
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/mmengine/model/base_model/base_model.py", line 114, in train_step
losses = self._run_forward(data, mode='loss') # type: ignore
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/mmengine/model/base_model/base_model.py", line 340, in _run_forward
results = self(**data, mode=mode)
File "/home/gjc23/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/data1/gjc23/mmsegmentation/mmseg/models/segmentors/base.py", line 94, in forward
return self.loss(inputs, data_samples)
File "/data1/gjc23/mmsegmentation/mmseg/models/segmentors/encoder_decoder.py", line 178, in loss
loss_decode = self._decode_head_forward_train(x, data_samples)
File "/data1/gjc23/mmsegmentation/mmseg/models/segmentors/encoder_decoder.py", line 140, in _decode_head_forward_train
self.train_cfg)
File "/data1/gjc23/mmsegmentation/mmseg/models/decode_heads/decode_head.py", line 262, in loss
losses = self.loss_by_feat(seg_logits, batch_data_samples)
File "/data1/gjc23/mmsegmentation/mmseg/models/decode_heads/decode_head.py", line 337, in loss_by_feat
seg_logits, seg_label, ignore_index=self.ignore_index)
File "/data1/gjc23/mmsegmentation/mmseg/models/losses/accuracy.py", line 49, in accuracy
correct = correct[:, target != ignore_index]
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
Bug fix The error says an arror occurred while calculating accuracy, but other networks calculate accuracy correctly, even if accuracy is 0. Looking forward to your reply, thank you!!!
插眼,我是设置class_weight后,发生类似的错误
代码貌似有点问题,请问你解决了吗 @SummerTide @longtimenoseeyou
代码貌似有点问题,请问你解决了吗 @SummerTide @longtimenoseeyou 你可以使用CUDA_VISIBLE_DEVICES=-1,来关闭gpu,用cpu运行你的程序可以看到具体的报错信息
thanks