mmsegmentation
mmsegmentation copied to clipboard
Validation Loss During Training
Getting the validation loss during training seems to be a common issue:
https://github.com/open-mmlab/mmsegmentation/issues/1711
https://github.com/open-mmlab/mmsegmentation/issues/1396
https://github.com/open-mmlab/mmsegmentation/issues/310
The most common 'solution' is to set workflow = [('train', 1), ('val', 1)]
.
But when I do this, while adjusting the samples_per_gpu
configuration, an error is reported :
Traceback (most recent call last):
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 34, in __next__
data = next(self.iter_loader)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
data = self._next_data()
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1197, in _next_data
raise StopIteration
StopIteration
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "tools/train.py", line 242, in <module>
main()
File "tools/train.py", line 231, in main
train_segmentor(
File "/mnt/sdb1/wangshunli/mmsegmentation/mmseg/apis/train.py", line 194, in train_segmentor
runner.run(data_loaders, cfg.workflow)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 144, in run
iter_runner(iter_loaders[i], **kwargs)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 80, in val
data_batch = next(data_loader)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/mmcv/runner/iter_based_runner.py", line 41, in __next__
data = next(self.iter_loader)
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 530, in __next__
data = self._next_data()
File "/home/user/.conda/envs/mm/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1197, in _next_data
raise StopIteration
StopIteration
I only changed the parameters workflow
and samples_per_gpu
. The configuration is as follows:
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='UNet',
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='SyncBN', requires_grad=True),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
norm_eval=False),
decode_head=dict(
type='FCNHead',
in_channels=64,
in_index=4,
channels=64,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=2,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=[
dict(
type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
]),
auxiliary_head=dict(
type='FCNHead',
in_channels=128,
in_index=3,
channels=64,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=2,
norm_cfg=dict(type='SyncBN', requires_grad=True),
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
train_cfg=dict(),
test_cfg=dict(mode='slide', crop_size=(128, 128), stride=(85, 85)))
dataset_type = 'ChaseDB1Dataset'
data_root = 'data/CHASE_DB1'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (960, 999)
crop_size = (128, 128)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(960, 999), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(128, 128), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(128, 128), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(960, 999),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=16, ## 4 -> 16
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=40000,
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(960, 999), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=(128, 128), cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(128, 128), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
],
dataset=dict(
type='ChaseDB1Dataset',
data_root='data/CHASE_DB1',
img_dir='images/training',
ann_dir='annotations/training',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='Resize',
img_scale=(960, 999),
ratio_range=(0.5, 2.0)),
dict(
type='RandomCrop',
crop_size=(128, 128),
cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size=(128, 128), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
])),
val=dict(
type='ChaseDB1Dataset',
data_root='data/CHASE_DB1',
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(960, 999),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='ChaseDB1Dataset',
data_root='data/CHASE_DB1',
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(960, 999),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook')
])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1), ('val', 1)] ## add ('val', 1)
cudnn_benchmark = True
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict()
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=40000)
checkpoint_config = dict(by_epoch=False, interval=4000)
evaluation = dict(interval=4000, metric='mDice', pre_eval=True)
work_dir = './work_dirs/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1'
gpu_ids = [0]
auto_resume = False
Morever, if I don't modify the workflow
and just adjust the samples_per_gpu
parameter, the training runs normally, but there is no output of Validation Loss.
Please follow this documentation to set the samples_per_gpu=1
for the validation loop, as mmseg don't support samples_per_gpu>1 during validation.
https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/tutorials/customize_datasets.md#data-configuration
It works, thank you very much.
Hello, how can validation loss be shown in MMSegmentation >= 1.0.0? It seems that in the new version it was removed, I cannot find any documentation about it.