mmrazor icon indicating copy to clipboard operation
mmrazor copied to clipboard

[Bug] TypeError: 'NoneType' object is not iterable

Open Priyanshu88 opened this issue 11 months ago • 0 comments

Describe the bug

The full traceback is below: runner = Runner.from_cfg(cfg) File "/opt/conda/lib/python3.9/site-packages/mmengine/runner/runner.py", line 462, in from_cfg runner = cls( File "/opt/conda/lib/python3.9/site-packages/mmengine/runner/runner.py", line 429, in init self.model = self.build_model(model) File "/opt/conda/lib/python3.9/site-packages/mmengine/runner/runner.py", line 836, in build_model model = MODELS.build(model) File "/opt/conda/lib/python3.9/site-packages/mmengine/registry/registry.py", line 570, in build return self.build_func(cfg, *args, **kwargs, registry=self) File "/opt/conda/lib/python3.9/site-packages/mmengine/registry/build_functions.py", line 232, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/opt/conda/lib/python3.9/site-packages/mmengine/registry/build_functions.py", line 121, in build_from_cfg obj = obj_cls(**args) # type: ignore File "/mmrazor/mmrazor/implementations/pruning/group_fisher/algorithm.py", line 57, in init self.mutator.prepare_from_supernet(self.architecture) File "/mmrazor/mmrazor/models/mutators/channel_mutator/channel_mutator.py", line 113, in prepare_from_supernet units = self._prepare_from_tracer(supernet, self.parse_cfg) File "/mmrazor/mmrazor/models/mutators/channel_mutator/channel_mutator.py", line 311, in _prepare_from_tracer unit_configs = tracer.analyze(model) File "/mmrazor/mmrazor/models/task_modules/tracer/channel_analyzer.py", line 107, in analyze fx_graph = self._fx_trace(model) File "/mmrazor/mmrazor/models/task_modules/tracer/channel_analyzer.py", line 132, in _fx_trace args = self.demo_input.get_data(model) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/demo_inputs.py", line 34, in get_data data = self._get_data(model, input_shape, training) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/default_demo_inputs.py", line 108, in _get_data return defaul_demo_inputs(model, input_shape, training, self.scope) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/default_demo_inputs.py", line 79, in defaul_demo_inputs return demo_input().get_data(model, input_shape, training) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/demo_inputs.py", line 34, in get_data data = self._get_data(model, input_shape, training) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/demo_inputs.py", line 57, in _get_data data = self._get_mm_data(model, input_shape, training) File "/mmrazor/mmrazor/models/task_modules/demo_inputs/demo_inputs.py", line 63, in _get_mm_data data = model.data_preprocessor(data, training) File "/opt/conda/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/opt/conda/lib/python3.9/site-packages/mmpose/models/data_preprocessors/data_preprocessor.py", line 94, in forward for data_sample, pad_shape in zip(data_samples, batch_pad_shape):

To Reproduce

Just run the train.py having rtmo_s with coco dataset format on body_2d_keypoint by using the pruning method.

Post related information

i have done all the relevant changes in config data and metafile to run this successfully but failure persists.

Additional context

Add any other context about the problem here.

[here]

Priyanshu88 avatar Mar 13 '24 05:03 Priyanshu88