error while test the mvxnet
Branch
main branch https://mmdetection3d.readthedocs.io/en/latest/
📚 The doc issue
i use the command "python tools/test.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py
checkpoints/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class-8963258a.pth
--show-dir ./data/mvxnet/show_results" to test the mvxnet, and a error happen:"AssertionError: got unexpected vis_task None."
then I add the command --task multi-view_det ,it runs but the final result shows all AP result are 0.0,
so how to test the mvx model correctly?
"
Suggest a potential alternative/fix
No response
and test the pointpillar model using the command:"python tools/test.py configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py checkpoints/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth --show --show-dir ./data/pointpillar/show_results ", the error"UnboundLocalError: local variable 'img_path' referenced before assignment" happen, how to solve it
-task multi-view_det ,it runs but the final result shows all AP result are 0.0, Have you solve this problem? I also encounter this error
I have the same problem, did you solve it?
@markwave pointpillars' bug need to download or generate a new infos.pkl file in https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html#summary-of-annotation-files.
MVXNet's bug is maybe the same as pointpillars'. When I tested it, it worked fine and no bugs were reproduced.
@markwave pointpillars' bug need to download or generate a new
infos.pklfile in https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html#summary-of-annotation-files.
I create these kitti datasets as the latest mmdet3d guides that describe before, so the bug you solve through download the new infos.pkl file? and the generate method which the latest docs provide will cause these bug? Is download the new pkl the only way to solve these question?
@markwave Can you provide the detailed code and the location of the error of the reported error? It's work well in my computer.
I say the bug which is the ”i use the command "python tools/test.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py checkpoints/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class-8963258a.pth --show-dir ./data/mvxnet/show_results" to test the mvxnet, and a error happen:"AssertionError: got unexpected vis_task None." then I add the command --task multi-view_det, and it runs but the final result shows all AP results are 0.0, so how to test the mvx model correctly?” so the mvxnet result I run, all the results were 0, does it runs well in your computer? And if you try to generate the kitti dataset as the docs write, then run the model well? Or solve these question only by downloading the pkl files from the websites to get the normal results and runs Pointpillar well ?
--task is not multi-view_det. MVXNet is a multi-modality_det model. Can you check that MVXNet outputs a right mAP without adding the show-dir and task parameters?
@markwave this is my new log when run:
python tools/test.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py checkpoints/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class-8963258a.pth
I hope this is helpful to you 20230629_105841.log
@markwave this is my new log when run:
python tools/test.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py checkpoints/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class-8963258a.pthI hope this is helpful to you 20230629_105841.log
thanks for your help, I will try your advice first,and tell you the results soon
@markwave this is my new log when run:
python tools/test.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py checkpoints/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class-8963258a.pthI hope this is helpful to you 20230629_105841.log
the results below also shows that,i use your advice not to add any parameters, “ 06/29 11:27:28 - mmengine - INFO - Results of pred_instances_3d:
----------- AP11 Results ------------
Pedestrian [email protected], 0.50, 0.50: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000 Car [email protected], 0.70, 0.70: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000
Overall AP11@easy, moderate, hard: bbox AP11:0.0000, 0.0000, 0.0000 bev AP11:0.0000, 0.0000, 0.0000 3d AP11:0.0000, 0.0000, 0.0000
----------- AP40 Results ------------
Pedestrian [email protected], 0.50, 0.50: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000 Pedestrian [email protected], 0.25, 0.25: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.50, 0.50: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000 Cyclist [email protected], 0.25, 0.25: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000 Car [email protected], 0.70, 0.70: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000 Car [email protected], 0.50, 0.50: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000
Overall AP40@easy, moderate, hard: bbox AP40:0.0000, 0.0000, 0.0000 bev AP40:0.0000, 0.0000, 0.0000 3d AP40:0.0000, 0.0000, 0.0000
06/29 11:27:28 - mmengine - INFO - Epoch(test) [3769/3769] Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP11_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP11_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP11_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP11_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP11_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP11_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP11_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP11_hard: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP11_hard: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP11_hard: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_3D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_BEV_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Pedestrian_2D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_3D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_BEV_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Cyclist_2D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_easy_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_moderate_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_hard_strict: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_easy_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_moderate_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_3D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_BEV_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Car_2D_AP40_hard_loose: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP40_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP40_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP40_easy: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP40_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP40_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP40_moderate: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_3D_AP40_hard: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_BEV_AP40_hard: 0.0000 Kitti metric/pred_instances_3d/KITTI/Overall_2D_AP40_hard: 0.0000 data_time: 0.0024 time: 0.0581 INFO - 2023-06-29 11:27:28,100 - driver - add pending dealloc: module_unload ? bytes “
@markwave It looks strange. Can you run python mmdet3d/utils/collect_env.py to check your environment? I guess you do not install spconv correctly.
@markwave It looks strange. Can you run
python mmdet3d/utils/collect_env.pyto check your environment? I guess you do not installspconvcorrectly.
thanks, I had the same problem and solved it by re install spconv
@markwave It looks strange. Can you run
python mmdet3d/utils/collect_env.pyto check your environment? I guess you do not installspconvcorrectly.
thanks bro,you are the best.I also solved it by install spconv
sys.platform: win32
Python: 3.8.20 (default, Oct 3 2024, 15:19:54) [MSC v.1929 64 bit (AMD64)]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0: NVIDIA GeForce RTX 2080
CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3
NVCC: Cuda compilation tools, release 11.3, V11.3.58
MSVC: Microsoft (R) C/C++ Optimizing Compiler Version 19.29.30158 for x64
GCC: n/a
PyTorch: 1.10.0+cu113
PyTorch compiling details: PyTorch built with:
- C++ Version: 199711
- MSVC 192829337
- Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
- OpenMP 2019
- LAPACK is enabled (usually provided by MKL)
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.2
- Magma 2.5.4
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/w/b/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/w/b/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON,
TorchVision: 0.11.1+cu113 OpenCV: 4.11.0 MMEngine: 0.8.0 MMDetection: 3.0.0 MMDetection3D: 1.4.0+962f093 spconv2.0: True
i a using this so can you guide me i have same problem is any specific version i have to download for spconv2?
is any specific version i have to install i am train with official data but i have same problem .