mmdetection icon indicating copy to clipboard operation
mmdetection copied to clipboard

Low mAP on coco with mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x

Open jonas-doevenspeck opened this issue 2 years ago • 1 comments

Describe the bug When running tools/test.py on mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x on coco, the performance (mAP) is much lower than reported here: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn .
For other models, I was able to reproduce the reported results. Is it possible there is something wrong with the config or checkpoint of this network?

-tools/test.py output: bbox: 40.4%, segm: 35.9% -mmdetection github page: bbox: 44.3%, segm: 39.5%

Reproduction

  1. What command or script did you run?
python tools/test.py configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py checkpoints/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth --eval bbox segm
  1. Did you make any modifications on the code or config? Did you understand what you have modified? No modifications
  2. What dataset did you use? Coco2017 validation set

Environment

  1. Please run python mmdet/utils/collect_env.py to collect necessary environment information and paste it here.

sys.platform: linux Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0] CUDA available: True GPU 0: Tesla T4 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.0, V11.0.221 GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 PyTorch: 1.8.0+cu111 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.9.0+cu111 OpenCV: 4.6.0 MMCV: 1.5.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 11.1 MMDetection: 2.25.0+56e42e7

  1. You may add addition that may be helpful for locating the problem, such as
    • How you installed PyTorch [e.g., pip, conda, source] With pip

jonas-doevenspeck avatar Aug 02 '22 08:08 jonas-doevenspeck

Could anyone have a look at this? @hhaAndroid @BIGWangYuDong

jonas-doevenspeck avatar Aug 08 '22 07:08 jonas-doevenspeck

@jonas-doevenspeck Thanks a lot for your feedback, I'll check it out.

hhaAndroid avatar Aug 09 '22 02:08 hhaAndroid

seems the ckpt have some problem, we will fix it ASAP

BIGWangYuDong avatar Aug 10 '22 01:08 BIGWangYuDong

@BIGWangYuDong and @hhaAndroid any update on this by any chance? If it's not fixed, could the table here (https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn) be updated with the lower number that is now produced? It is confusing/misleading to have different numbers in the table and what is achieved by the uploaded checkpoint.

jonas-doevenspeck avatar Aug 25 '22 13:08 jonas-doevenspeck

@BIGWangYuDong and @hhaAndroid any update? Please see my comment above.

jonas-doevenspeck avatar Oct 03 '22 13:10 jonas-doevenspeck