mmdetection
mmdetection copied to clipboard
Low mAP on coco with mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x
Describe the bug
When running tools/test.py on mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x on coco, the performance (mAP) is much lower than reported here: https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn .
For other models, I was able to reproduce the reported results. Is it possible there is something wrong with the config or checkpoint of this network?
-tools/test.py output: bbox: 40.4%, segm: 35.9% -mmdetection github page: bbox: 44.3%, segm: 39.5%
Reproduction
- What command or script did you run?
python tools/test.py configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py checkpoints/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth --eval bbox segm
- Did you make any modifications on the code or config? Did you understand what you have modified? No modifications
- What dataset did you use? Coco2017 validation set
Environment
- Please run
python mmdet/utils/collect_env.py
to collect necessary environment information and paste it here.
sys.platform: linux Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0] CUDA available: True GPU 0: Tesla T4 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.0, V11.0.221 GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 PyTorch: 1.8.0+cu111 PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.0.5
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.9.0+cu111 OpenCV: 4.6.0 MMCV: 1.5.0 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 11.1 MMDetection: 2.25.0+56e42e7
- You may add addition that may be helpful for locating the problem, such as
- How you installed PyTorch [e.g., pip, conda, source] With pip
Could anyone have a look at this? @hhaAndroid @BIGWangYuDong
@jonas-doevenspeck Thanks a lot for your feedback, I'll check it out.
seems the ckpt have some problem, we will fix it ASAP
@BIGWangYuDong and @hhaAndroid any update on this by any chance? If it's not fixed, could the table here (https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn) be updated with the lower number that is now produced? It is confusing/misleading to have different numbers in the table and what is achieved by the uploaded checkpoint.
@BIGWangYuDong and @hhaAndroid any update? Please see my comment above.