mmdetection
mmdetection copied to clipboard
_batch_inputs = data['inputs'] KeyError: 'inputs' error while training
Thanks for your error report and we appreciate it a lot.
Checklist
- I have searched related issues but cannot get the expected help.
- I have read the FAQ documentation but cannot get the expected help.
- The bug has not been fixed in the latest version.
Describe the bug I have written custom model on training mmdetection model. When I try training the model on custom data, I'm getting this error. _batch_inputs = data['inputs'] KeyError: 'inputs'
Reproduction
- What command or script did you run? python tools/train.py configs/custom_table.py
A placeholder for the command.
- Did you make any modifications on the code or config? Did you understand what you have modified?
- What dataset did you use? Custom dataset
Environment
- Please run
python mmdet/utils/collect_env.py
to collect necessary environment information and paste it here. sys.platform: win32 Python: 3.8.16 (default, Mar 2 2023, 03:18:16) [MSC v.1916 64 bit (AMD64)] CUDA available: True numpy_random_seed: 2147483648 GPU 0: GeForce RTX 2070 CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2 NVCC: Cuda compilation tools, release 11.2, V11.2.67 MSVC: Microsoft (R) C/C++ Optimizing Compiler Version 19.36.32532 for x64 GCC: n/a PyTorch: 1.11.0+cu113 PyTorch compiling details: PyTorch built with:
- C++ Version: 199711
- MSVC 192829337
- Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
- OpenMP 2019
- LAPACK is enabled (usually provided by MKL)
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.2
- Magma 2.5.4
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.12.0+cu113 OpenCV: 4.7.0 MMEngine: 0.7.4 MMDetection: 3.0.0+ecac3a7 3. You may add addition that may be helpful for locating the problem, such as
- How you installed PyTorch [e.g., pip, conda, source]
- Other environment variables that may be related (such as
$PATH
,$LD_LIBRARY_PATH
,$PYTHONPATH
, etc.)
Error traceback If applicable, paste the error trackback here.
A placeholder for trackback.
Bug fix If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
the same problem,how to solve it?
I have the same problem too. Waiting for some help in this thread.
EDIT: I tried reading the python files, and it has something to do with the 'inputs' key. I think this has something to do with loading the input data.
My dataset structure is:
> dataset
> |
> | coco
>
> |
> | train
> | 1.jpg
> ........
> train.json
> test
> | 1***.jpg
> ........
> test.json
> val
> | 1****.jpg
> ........
> val.json
Any insight would be very much appreciated
Maybe your data_loader error, you can check weather it in clude pipeline=train_pipeline,
in dataset
Maybe your data_loader error, you can check weather it in clude
pipeline=train_pipeline,
in dataset thanks so much, that key for me to solve stuck
same problem
same error. and I add test_mode=True, pipeline=test_pipeline, backend_args=backend_args
in dataset
of test_dataloader
, then solved it.
add 'LoadFromFile' to your conifg
相应的配置模型配置文件出错了,可以重新生成模型配置文件 我在运行test.py出现这个错误, 修改test对应得pipeline解决 pipeline修改前 pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), ],
pipeline修改后
修改后
pipeline=[
dict(backend_args=None, type='LoadImageFromFile'),
dict(keep_ratio=True, scale=(
800,
500,
), type='Resize'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
),
type='PackDetInputs'),
],
pipeline add dict(type="PackInputs") and save this error