mmdetection
mmdetection copied to clipboard
[Bug] video_demo.py error,when runing mask2former
Prerequisite
- [X] I have searched Issues and Discussions but cannot get the expected help.
- [X] I have read the FAQ documentation but cannot get the expected help.
- [X] The bug has not been fixed in the latest version (master) or latest version (3.x).
Task
I'm using the official example scripts/configs for the officially supported tasks/models/datasets.
Branch
3.x branch https://github.com/open-mmlab/mmdetection/tree/3.x
Environment
sys.platform: linux Python: 3.8.16 (default, Mar 2 2023, 03:21:46) [GCC 11.2.0] CUDA available: True numpy_random_seed: 2147483648 GPU 0: NVIDIA GeForce RTX 4090 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 12.1, V12.1.66 GCC: gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 PyTorch: 1.12.1 PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.6
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.3.2 (built against CUDA 11.5)
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.6, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.13.1 OpenCV: 4.7.0 MMEngine: 0.6.0 MMDetection: 3.0.0rc6+c320060
Reproduces the problem - code sample
no
Reproduces the problem - command or script
python demo/video_demo.py video.avi configs/mask2former/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic.py work_dirs/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic_20220407_104949-82f8d28d.pth --out mask2former_result.avi --show --score-thr 0.5
Reproduces the problem - error message
Loads checkpoint by local backend from path: work_dirs/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic_20220407_104949-82f8d28d.pth
/home/zhangzs36/anaconda3/envs/openmmlab3/lib/python3.8/site-packages/mmengine/visualization/visualizer.py:166: UserWarning: Visualizer
backend is not initialized because save_dir is None.
warnings.warn('Visualizer
backend is not initialized '
[ ] 0/2380, elapsed: 0s, ETA:/mnt/data1/代码/深度学习/mmdetection/mmdet/models/layers/positional_encoding.py:84: UserWarning: floordiv is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats)
/home/zhangzs36/anaconda3/envs/openmmlab3/lib/python3.8/site-packages/torch/functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1659484683044/work/aten/src/ATen/native/TensorShape.cpp:2894.)
return VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Traceback (most recent call last):
File "demo/video_demo.py", line 83, in
typedef long long int int64_t; typedef unsigned int uint32_t; typedef signed char int8_t; typedef unsigned char uint8_t; // NOTE: this MUST be "unsigned char"! "char" is equivalent to "signed char" typedef short int16_t; static_assert(sizeof(int64_t) == 8, "expected size does not match"); static_assert(sizeof(uint32_t) == 4, "expected size does not match"); static_assert(sizeof(int8_t) == 1, "expected size does not match"); constexpr int num_threads = 128; constexpr int thread_work_size = 4; // TODO: make template substitution once we decide where those vars live constexpr int block_work_size = thread_work_size * num_threads; //TODO use _assert_fail, because assert is disabled in non-debug builds #define ERROR_UNSUPPORTED_CAST assert(false);
namespace std {
using ::signbit; using ::isfinite; using ::isinf; using ::isnan;
using ::abs;
using ::acos; using ::acosf; using ::asin; using ::asinf; using ::atan; using ::atanf; using ::atan2; using ::atan2f; using ::ceil; using ::ceilf; using ::cos; using ::cosf; using ::cosh; using ::coshf;
using ::exp; using ::expf;
using ::fabs; using ::fabsf; using ::floor; using ::floorf;
using ::fmod; using ::fmodf;
using ::frexp; using ::frexpf; using ::ldexp; using ::ldexpf;
using ::log; using ::logf;
using ::log10; using ::log10f; using ::modf; using ::modff;
using ::pow; using ::powf;
using ::sin; using ::sinf; using ::sinh; using ::sinhf;
using ::sqrt; using ::sqrtf; using ::tan; using ::tanf;
using ::tanh; using ::tanhf;
using ::acosh; using ::acoshf; using ::asinh; using ::asinhf; using ::atanh; using ::atanhf; using ::cbrt; using ::cbrtf;
using ::copysign; using ::copysignf;
using ::erf; using ::erff; using ::erfc; using ::erfcf; using ::exp2; using ::exp2f; using ::expm1; using ::expm1f; using ::fdim; using ::fdimf; using ::fmaf; using ::fma; using ::fmax; using ::fmaxf; using ::fmin; using ::fminf; using ::hypot; using ::hypotf; using ::ilogb; using ::ilogbf; using ::lgamma; using ::lgammaf; using ::llrint; using ::llrintf; using ::llround; using ::llroundf; using ::log1p; using ::log1pf; using ::log2; using ::log2f; using ::logb; using ::logbf; using ::lrint; using ::lrintf; using ::lround; using ::lroundf;
using ::nan; using ::nanf;
using ::nearbyint; using ::nearbyintf; using ::nextafter; using ::nextafterf; using ::remainder; using ::remainderf; using ::remquo; using ::remquof; using ::rint; using ::rintf; using ::round; using ::roundf; using ::scalbln; using ::scalblnf; using ::scalbn; using ::scalbnf; using ::tgamma; using ::tgammaf; using ::trunc; using ::truncf;
} // namespace std
// NB: Order matters for this macro; it is relied upon in
// promoteTypesLookup and the serialization format.
// Note, some types have ctype as void because we don't support them in codegen
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX()
_(uint8_t, Byte) /* 0 /
_(int8_t, Char) / 1 /
_(int16_t, Short) / 2 /
_(int, Int) / 3 /
_(int64_t, Long) / 4 /
_(at::Half, Half) / 5 /
_(float, Float) / 6 /
_(double, Double) / 7 /
_(std::complexat::Half, ComplexHalf) / 8 /
_(std::complex
_(std::complex
_(bool, Bool) / 11 /
_(void, QInt8) / 12 /
_(void, QUInt8) / 13 /
_(void, QInt32) / 14 /
_(at::BFloat16, BFloat16) / 15 */ \
#define AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_EXCEPT_QINT(_)
_(uint8_t, Byte)
_(int8_t, Char)
_(int16_t, Short)
_(int, Int)
_(int64_t, Long)
_(at::Half, Half)
_(float, Float)
_(double, Double)
_(std::complexat::Half, ComplexHalf)
_(std::complex
_(std::complex
_(bool, Bool)
_(at::BFloat16, BFloat16)
enum class ScalarType : int8_t { #define DEFINE_ENUM(_1, n) n, AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ENUM) #undef DEFINE_ENUM Undefined, NumOptions };
template <typename T, int size> struct Array { T data[size];
device T operator[](int i) const { return data[i]; } device T& operator[](int i) { return data[i]; } Array() = default; Array(const Array&) = default; Array& operator=(const Array&) = default; device Array(T x) { for (int i = 0; i < size; i++) { data[i] = x; } } };
template <typename T> struct DivMod { T div; T mod;
device DivMod(T _div, T _mod) { div = _div; mod = _mod; } };
//
device inline unsigned int div(unsigned int n) const { unsigned int t = __umulhi(n, m1); return (t + n) >> shift; }
device inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; }
device inline DivMod
unsigned int divisor; // d above. unsigned int m1; // Magic number: m' above. unsigned int shift; // Shift amounts. };
template <int NARGS> struct TrivialOffsetCalculator { // The offset for each argument. Wrapper around fixed-size array. // The offsets are in # of elements, not in bytes. Array<unsigned int, NARGS> get(unsigned int linear_idx) const { Array<unsigned int, NARGS> offsets; #pragma unroll for (int arg = 0; arg < NARGS; arg++) { offsets[arg] = linear_idx; } return offsets; } };
template<int NARGS> struct OffsetCalculator { OffsetCalculator() = default; device forceinline Array<unsigned int, NARGS> get(unsigned int linear_idx) const { Array<unsigned int, NARGS> offsets; #pragma unroll for (int arg = 0; arg < NARGS; ++arg) { offsets[arg] = 0; }
#pragma unroll
for (int dim = 0; dim < 25; ++dim) {
if (dim == dims) {
break;
}
auto divmod = sizes_[dim].divmod(linear_idx);
linear_idx = divmod.div;
#pragma unroll
for (int arg = 0; arg < NARGS; ++arg) {
offsets[arg] += divmod.mod * strides_[dim][arg];
}
//printf("offset calc thread dim size stride offset %d %d %d %d %d %d %d %d\n",
//threadIdx.x, dim, sizes_[dim].divisor, strides_[dim][0], offsets[0], linear_idx, divmod.div, divmod.mod);
}
return offsets;
}
int dims;
IntDivider sizes_[25];
// NOTE: this approach will not support nInputs == 0
unsigned int strides_[25][NARGS];
};
#define C10_HOST_DEVICE host device #define C10_DEVICE device
template <typename T> device forceinline T WARP_SHFL_DOWN(T value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff) { return __shfl_down_sync(mask, value, delta, width); }
#if 0 template <typename T> device forceinline std::complex<T> WARP_SHFL_DOWN(std::complex<T> value, unsigned int delta, int width = warpSize, unsigned int mask = 0xffffffff) { return std::complex<T>( __shfl_down_sync(mask, value.real(), delta, width), __shfl_down_sync(mask, value.imag(), delta, width)); } #endif
// aligned vector generates vectorized load/store on CUDA template<typename scalar_t, int vec_size> struct alignas(sizeof(scalar_t) * vec_size) aligned_vector { scalar_t val[vec_size]; };
C10_HOST_DEVICE static void reduce_fraction(size_t &numerator, size_t &denominator) { // get GCD of num and denom using Euclid's algorithm. // Can replace this with std::gcd if we ever support c++17. size_t a = denominator; size_t b = numerator; while (b != 0) { a %= b; // swap(a,b) size_t tmp = a; a = b; b = tmp; }
// a is now the GCD
numerator /= a;
denominator /= a;
}
struct ReduceConfig { //has to match host-side ReduceConfig in the eager code static constexpr int BLOCK_X = 0; static constexpr int BLOCK_Y = 1; static constexpr int CTA = 2;
static constexpr int input_vec_size = 4; int element_size_bytes; int num_inputs; int num_outputs; int step_input = 1; int step_output = 1; int ctas_per_output = 1; int input_mult[3] = {0, 0, 0}; int output_mult[2] = {0, 0};
int block_width; int block_height; int num_threads;
bool vectorize_input = false; int output_vec_size = 1;
C10_HOST_DEVICE bool should_block_x_reduce() const { return input_mult[BLOCK_X] != 0; }
C10_HOST_DEVICE bool should_block_y_reduce() const { return input_mult[BLOCK_Y] != 0; }
C10_HOST_DEVICE bool should_global_reduce() const { return input_mult[CTA] != 0; }
C10_DEVICE bool should_store(int output_idx) const { return output_idx < num_outputs && (!should_block_x_reduce() || threadIdx.x == 0) && (!should_block_y_reduce() || threadIdx.y == 0); }
C10_DEVICE bool should_reduce_tail() const { return (!should_block_y_reduce() || threadIdx.y == 0) && (!should_global_reduce() || blockIdx.y == 0); }
C10_HOST_DEVICE int input_idx() const { int lane = threadIdx.x; int warp = threadIdx.y; int cta2 = blockIdx.y; return (lane * input_mult[BLOCK_X] + warp * input_mult[BLOCK_Y] + cta2 * input_mult[CTA]); }
template
C10_DEVICE int shared_memory_offset(int offset) const { return threadIdx.x + (threadIdx.y + offset) * blockDim.x; }
C10_DEVICE int staging_memory_offset(int cta2) const { int offset = cta2 + blockIdx.x * gridDim.y; if (!should_block_x_reduce()) { offset = threadIdx.x + offset * blockDim.x; } return offset; }
};
//TODO this will need to be different for more generic reduction functions namespace reducer {
using scalar_t = int64_t; using arg_t = int64_t; using out_scalar_t = int64_t;
inline device arg_t combine(arg_t a, arg_t b) { return a * b; }
inline device out_scalar_t project(arg_t arg) { return (out_scalar_t) arg; }
inline device arg_t warp_shfl_down(arg_t arg, int offset) { return WARP_SHFL_DOWN(arg, offset); }
inline device arg_t translate_idx(arg_t acc, int64_t /idx/) { return acc; }
// wrap a normal reduction that ignores the index inline device arg_t reduce(arg_t acc, arg_t val, int64_t idx) { return combine(acc, val); } }
struct ReduceJitOp { using scalar_t = int64_t; using arg_t = int64_t; using out_scalar_t = int64_t;
using InputCalculator = OffsetCalculator<1>; using OutputCalculator = OffsetCalculator<2>;
// static constexpr bool can_accumulate_in_output = // std::is_convertible<arg_t, out_scalar_t>::value // && std::is_convertible<out_scalar_t, arg_t>::value;
static constexpr int input_vec_size = ReduceConfig::input_vec_size;
arg_t ident; ReduceConfig config; InputCalculator input_calc; OutputCalculator output_calc; const void* src; const char* dst[2]; //it accepts at most two destinations // acc_buf used for accumulation among sub Tensor Iterator when accumulation on // output is not permissible void* acc_buf; // cta_buf used for accumulation between blocks during global reduction void* cta_buf; int* semaphores; int64_t base_idx; bool accumulate; bool final_output; int noutputs;
C10_DEVICE void run() const { extern shared char shared_memory[]; uint32_t output_idx = config.output_idx<1>(); uint32_t input_idx = config.input_idx(); auto base_offsets1 = output_calc.get(output_idx)[1];
using arg_vec_t = Array<arg_t, 1>;
arg_vec_t value;
if (output_idx < config.num_outputs && input_idx < config.num_inputs) {
const scalar_t* input_slice = (const scalar_t*)((const char*)src + base_offsets1);
value = thread_reduce<1>(input_slice);
}
if (config.should_block_y_reduce()) {
value = block_y_reduce<1>(value, shared_memory);
}
if (config.should_block_x_reduce()) {
value = block_x_reduce<1>(value, shared_memory);
}
using out_ptr_vec_t = Array<out_scalar_t*, 1>;
using offset_vec_t = Array<uint32_t, 1>;
offset_vec_t base_offsets;
out_ptr_vec_t out;
#pragma unroll
for (int i = 0; i < 1; i++) {
base_offsets[i] = output_calc.get(output_idx + i)[0];
out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}
arg_vec_t* acc = nullptr;
if (acc_buf != nullptr) {
size_t numerator = sizeof(arg_t);
size_t denominator = sizeof(out_scalar_t);
reduce_fraction(numerator, denominator);
acc = (arg_vec_t*)((char*)acc_buf + (base_offsets[0] * numerator / denominator));
}
if (config.should_global_reduce()) {
value = global_reduce<1>(value, acc, shared_memory);
} else if (config.should_store(output_idx)) {
if (accumulate) {
#pragma unroll
for (int i = 0; i < 1; i++) {
value[i] = reducer::translate_idx(value[i], base_idx);
}
}
if (acc == nullptr) {
if (accumulate) {
value = accumulate_in_output<1>(out, value);
}
if (final_output) {
set_results_to_output<1>(value, base_offsets);
} else {
#pragma unroll
for (int i = 0; i < 1; i++) {
*(out[i]) = get_accumulated_output(out[i], value[i]);
}
}
} else {
if (accumulate) {
#pragma unroll
for (int i = 0; i < 1; i++) {
value[i] = reducer::combine((*acc)[i], value[i]);
}
}
if (final_output) {
set_results_to_output<1>(value, base_offsets);
} else {
*acc = value;
}
}
}
}
template
C10_DEVICE arg_t input_vectorized_thread_reduce_impl(const scalar_t* data) const { uint32_t end = config.num_inputs;
// Handle the head of input slice where data is not aligned
arg_t value = ident;
constexpr int align_bytes = alignof(aligned_vector<scalar_t, input_vec_size>);
constexpr int align_elements = align_bytes / sizeof(scalar_t);
int shift = ((int64_t)data) % align_bytes / sizeof(scalar_t);
if (shift > 0) {
data -= shift;
end += shift;
if(threadIdx.x >= shift && threadIdx.x < align_elements && config.should_reduce_tail()){
value = reducer::reduce(value, data[threadIdx.x], threadIdx.x - shift);
}
end -= align_elements;
data += align_elements;
shift = align_elements - shift;
}
// Do the vectorized reduction
using load_t = aligned_vector<scalar_t, input_vec_size>;
uint32_t idx = config.input_idx();
const uint32_t stride = config.step_input;
// Multiple accumulators to remove dependency between unrolled loops.
arg_t value_list[input_vec_size];
value_list[0] = value;
#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
value_list[i] = ident;
}
scalar_t values[input_vec_size];
load_t *values_vector = reinterpret_cast<load_t*>(&values[0]);
while (idx * input_vec_size + input_vec_size - 1 < end) {
*values_vector = reinterpret_cast<const load_t*>(data)[idx];
#pragma unroll
for (uint32_t i = 0; i < input_vec_size; i++) {
value_list[i] = reducer::reduce(value_list[i], values[i], shift + idx * input_vec_size + i);
}
idx += stride;
}
// tail
uint32_t tail_start = end - end % input_vec_size;
if (config.should_reduce_tail()) {
int idx = tail_start + threadIdx.x;
if (idx < end) {
value_list[0] = reducer::reduce(value_list[0], data[idx], idx + shift);
}
}
// combine accumulators
#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
value_list[0] = reducer::combine(value_list[0], value_list[i]);
}
return value_list[0];
}
template <int output_vec_size, typename offset_calc_t> C10_DEVICE Array<arg_t, output_vec_size> thread_reduce_impl(const scalar_t* data_, offset_calc_t calc) const { uint32_t idx = config.input_idx(); const uint32_t end = config.num_inputs; const uint32_t stride = config.step_input; const int vt0=4;
using arg_vec_t = Array<arg_t, output_vec_size>;
using load_t = aligned_vector<scalar_t, output_vec_size>;
const load_t* data = reinterpret_cast<const load_t*>(data_);
// Multiple accumulators to remove dependency between unrolled loops.
arg_vec_t value_list[vt0];
#pragma unroll
for (int i = 0; i < vt0; i++) {
#pragma unroll
for (int j = 0; j < output_vec_size; j++) {
value_list[i][j] = ident;
}
}
load_t values[vt0];
while (idx + (vt0 - 1) * stride < end) {
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
values[i] = data[calc(idx + i * stride) / output_vec_size];
}
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
#pragma unroll
for (uint32_t j = 0; j < output_vec_size; j++) {
value_list[i][j] = reducer::reduce(value_list[i][j], values[i].val[j], idx + i * stride);
}
}
idx += stride * vt0;
}
// tail
int idx_ = idx;
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
if (idx >= end) {
break;
}
values[i] = data[calc(idx) / output_vec_size];
idx += stride;
}
idx = idx_;
#pragma unroll
for (uint32_t i = 0; i < vt0; i++) {
if (idx >= end) {
break;
}
#pragma unroll
for (uint32_t j = 0; j < output_vec_size; j++) {
value_list[i][j] = reducer::reduce(value_list[i][j], values[i].val[j], idx);
}
idx += stride;
}
// combine accumulators
#pragma unroll
for (int i = 1; i < vt0; i++) {
#pragma unroll
for (uint32_t j = 0; j < output_vec_size; j++) {
value_list[0][j] = reducer::combine(value_list[0][j], value_list[i][j]);
}
}
return value_list[0];
}
template
__syncthreads();
for (int offset = 1; offset < dim_x; offset <<= 1) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
arg_t other = reducer::warp_shfl_down(value[i], offset);
value[i] = reducer::combine(value[i], other);
}
}
return value;
}
template
C10_DEVICE bool mark_block_finished() const { shared bool is_last_block_done_shared;
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0) {
int prev_blocks_finished = atomicAdd(&semaphores[blockIdx.x], 1);
is_last_block_done_shared = (prev_blocks_finished == gridDim.y - 1);
}
__syncthreads();
return is_last_block_done_shared;
}
template
C10_DEVICE out_scalar_t get_accumulated_output( out_scalar_t* out, arg_t value ) const { assert(!final_output); return (out_scalar_t)value; }
template<class T> C10_DEVICE void set_results(const T x, const uint32_t base_offset) const { assert(noutputs == 1); auto res = (out_scalar_t*)((char*)dst[0] + base_offset); *res = x; }
//TODO - multi-output reduction - we won't be able to use thrust::pair //just explicitly specify typed output reads/writes //Currently implemented for max of two outputs // template<class T1, class T2> // C10_DEVICE void set_results(const thrust::pair<T1, T2> x, const index_t base_offset) const { // if (noutputs >= 1) { // auto res0 = (T1*)((char*)dst[0] + base_offset); // res0 = x.first; // } // if (noutputs >= 2) { // // base offset is computed assuming element size being sizeof(T1), so we need to make a // // correction to obtain the correct base offset // auto res1 = (T2) ((char *) dst[1] + base_offset / sizeof(T1) * sizeof(T2)); // *res1 = x.second; // } // }
template
template
arg_vec_t* reduce_buffer = (arg_vec_t*)cta_buf;
uint32_t output_idx = config.output_idx<output_vec_size>();
offset_vec_t base_offsets;
out_ptr_vec_t out;
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
base_offsets[i] = output_calc.get(output_idx + i)[0];
out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}
bool should_store = config.should_store(output_idx);
if (should_store) {
uint32_t offset = config.staging_memory_offset(blockIdx.y);
reduce_buffer[offset] = value;
}
__threadfence(); // make sure writes are globally visible
__syncthreads(); // if multiple warps in this block wrote to staging, make sure they're all done
bool is_last_block_done = mark_block_finished();
if (is_last_block_done) {
value = ident;
if (config.should_block_x_reduce()) {
uint32_t input_offset = threadIdx.x + threadIdx.y * blockDim.x;
uint32_t step = blockDim.x * blockDim.y;
for (; input_offset < config.ctas_per_output; input_offset += step) {
uint32_t idx = config.staging_memory_offset(input_offset);
arg_vec_t next = reduce_buffer[idx];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = reducer::combine(value[i], next[i]);
}
}
} else {
uint32_t input_offset = threadIdx.y;
uint32_t step = blockDim.y;
for (; input_offset < config.ctas_per_output; input_offset += step) {
uint32_t idx = config.staging_memory_offset(input_offset);
arg_vec_t next = reduce_buffer[idx];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = reducer::combine(value[i], next[i]);
}
}
}
value = block_y_reduce(value, shared_memory);
if (config.should_block_x_reduce()) {
value = block_x_reduce<output_vec_size>(value, shared_memory);
}
if (should_store) {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = reducer::translate_idx(value[i], base_idx);
}
}
if (acc == nullptr) {
if (accumulate) {
value = accumulate_in_output<output_vec_size>(out, value);
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
*(out[i]) = get_accumulated_output(out[i], value[i]);
}
}
} else {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = reducer::combine((*acc)[i], value[i]);
}
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
*acc = value;
}
}
}
}
return value;
} };
extern "C" launch_bounds(512, 4) global void reduction_prod_kernel(ReduceJitOp r){ r.run(); } nvrtc: error: invalid value for --gpu-architecture (-arch)
Additional information
No response