[WIP] Deploy config updater
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily receiving feedbacks. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.
Motivation
This PR is a demo about the updater of model config. It is embedded in task processor.
NOTE: this is just a demo. DISCUSSION is required.
Super Resolution and Monocular Detection do not special input shape, so it is not possible to generate config for it.
For example:
# TensorRT config for object detection
# less context and parameters are more readable
ir_config = dict(type='onnx')
codebase_config = dict(
type='mmdet',
task='ObjectDetection',
model_type='end2end',
is_dynamic_batch=True,
is_dynamic_size=True,
# input_shape=(1344, 800),
detection_mode='detection')
backend_config = dict(
type='tensorrt',
common_config=dict(fp16_mode=False, max_workspace_size=1073741824),
)
# generate script
from mmcv import Config
from mmdeploy.apis import build_task_processor
deploy_cfg = './deploy_cfg.py'
model_cfg = 'configs/ssd/ssd300_coco.py'
deploy_cfg = Config.fromfile(deploy_cfg)
model_cfg = Config.fromfile(model_cfg)
task = build_task_processor(model_cfg, deploy_cfg, 'cuda')
codebase_cfg = deploy_cfg['codebase_config'].copy()
codebase_cfg.pop('type')
task.update_deploy_config(deploy_cfg, **codebase_cfg)
print(deploy_cfg.pretty_text)
# generated config
ir_config = dict(
type='onnx',
input_names=['input'],
output_names=['dets', 'labels'],
dynamic_axes=dict(
input=dict({0: 'batch'}),
dets=dict({0: 'batch'}),
labels=dict({0: 'batch'})),
input_shape=(300, 300))
codebase_config = dict(
type='mmdet',
task='ObjectDetection',
model_type='end2end',
is_dynamic_batch=True,
is_dynamic_size=False,
detection_mode='detection',
input_shape=(300, 300),
post_processing=dict(
score_threshold=0.05,
confidence_threshold=0.005,
iou_threshold=0.5,
max_output_boxes_per_class=200,
pre_top_k=5000,
keep_top_k=100,
background_label_id=-1))
backend_config = dict(
type='tensorrt',
common_config=dict(fp16_mode=False, max_workspace_size=1073741824),
model_inputs=[
dict(
input_shapes=dict(
input=dict(
min_shape=(1, 3, 300, 300),
opt_shape=(1, 3, 300, 300),
max_shape=(2, 3, 300, 300))))
])
Modification
Please briefly describe what modification is made in this PR.
BC-breaking (Optional)
Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.
Use cases (Optional)
If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.
Checklist
- Pre-commit or other linting tools are used to fix the potential lint issues.
- The modification is covered by complete unit tests. If not, please add more unit tests to ensure the correctness.
- If the modification has a dependency on downstream projects of a newer version, this PR should be tested with all supported versions of downstream projects.
- The documentation has been modified accordingly, like docstring or example tutorials.
Codecov Report
Attention: Patch coverage is 3.39147% with 997 lines in your changes missing coverage. Please review.
Project coverage is 41.69%. Comparing base (
d113a5f) to head (ac7f9c0). Report is 78 commits behind head on master.
Additional details and impacted files
@@ Coverage Diff @@
## master #1579 +/- ##
==========================================
- Coverage 44.83% 41.69% -3.14%
==========================================
Files 356 356
Lines 12698 13739 +1041
Branches 1791 2001 +210
==========================================
+ Hits 5693 5729 +36
- Misses 6614 7615 +1001
- Partials 391 395 +4
| Flag | Coverage Δ | |
|---|---|---|
| unittests | 41.69% <3.39%> (-3.14%) |
:arrow_down: |
Flags with carried forward coverage won't be shown. Click here to find out more.
:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.
:rocket: New features to boost your workflow:
- :snowflake: Test Analytics: Detect flaky tests, report on failures, and find test suite problems.