mmaction2
mmaction2 copied to clipboard
[Bug] 'ActionVisualizer is not in the mmengine::visualizer registry.
Branch
main branch (1.x version, such as v1.0.0
, or dev-1.x
branch)
Prerequisite
- [X] I have searched Issues and Discussions but cannot get the expected help.
- [X] I have read the documentation but cannot get the expected help.
- [X] The bug has not been fixed in the latest version.
Environment
mmcls 0.25.0
mmcv 2.0.1
mmengine 0.10.1
opencv-contrib-python 4.8.1.78
opencv-python 4.8.1.78
python 3.10.13
pytorch 1.12.0 py3.10_cuda11.3_cudnn8.3.2_0 pytorch
torchaudio 0.12.0
torchvision 0.13.0
tqdm 4.65.2
Describe the bug
我在自己3060电脑上跑着代码是没有问题的,能够出结果,但是将代码放到3090服务器上,并且配置了和本地一样的环境,提示 'ActionVisualizer is not in the mmengine::visualizer registry.我尝试很多不同版本的mmcv,mmengine等都不能解决
Reproduces the problem - code sample
No response
Reproduces the problem - command or script
CUDA_VISIBLE_DEVICES=6 nohup python tools/train.py configs/recognition/resnet_code.py >> output.out 2>&1 &
Reproduces the problem - error message
12/14 21:31:06 - mmengine - INFO -
System environment: sys.platform: linux Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] CUDA available: True numpy_random_seed: 1187698724 GPU 0: NVIDIA GeForce RTX 3090 CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.3, V11.3.58 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 PyTorch: 1.12.0 PyTorch compiling details: PyTorch built with:
-
GCC 9.3
-
C++ Version: 201402
-
Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
-
Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
-
OpenMP 201511 (a.k.a. OpenMP 4.5)
-
LAPACK is enabled (usually provided by MKL)
-
NNPACK is enabled
-
CPU capability usage: AVX2
-
CUDA Runtime 11.3
-
NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
-
CuDNN 8.3.2 (built against CUDA 11.5)
-
Magma 2.5.2
-
Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.13.0 OpenCV: 4.8.1 MMEngine: 0.10.1
Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 1187698724 diff_rank_seed: False deterministic: False Distributed launcher: none Distributed training: False GPU number: 1
12/14 21:31:07 - mmengine - INFO - Config: ann_file_test = '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/test_label.txt' ann_file_train = '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/train_label.txt' ann_file_val = '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/test_label.txt' auto_scale_lr = dict(base_batch_size=128, enable=False) batch_size = 2 data_root = '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_rgb_event/' data_root_val = '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_rgb_event/' dataset_type = 'RawframeDataset' default_hooks = dict( checkpoint=dict( interval=3, max_keep_ckpts=1, save_best='auto', type='CheckpointHook'), logger=dict(ignore_last=False, interval=500, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), runtime_info=dict(type='RuntimeInfoHook'), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffers=dict(type='SyncBuffersHook'), timer=dict(type='IterTimerHook')) default_scope = 'mmengine' env_cfg = dict( cudnn_benchmark=False, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) file_client_args = dict(io_backend='disk') launcher = 'none' load_from = None log_level = 'INFO' log_processor = dict(by_epoch=True, type='LogProcessor', window_size=20) model = dict( backbone=dict(depth=50, type='ResNetELP'), cls_head=dict(in_channels=2048, num_classes=5, type='MutilModelHead'), type='Recognizer2D') num_workers = 4 optim_wrapper = dict( clip_grad=dict(max_norm=20, norm_type=2), constructor='TSMOptimWrapperConstructor', optimizer=dict(lr=0.001, momentum=0.9, type='SGD', weight_decay=0.0001), paramwise_cfg=dict(fc_lr5=True)) param_scheduler = [ dict( begin=0, by_epoch=True, end=30, gamma=0.1, milestones=[ 25, 30, ], type='MultiStepLR'), ] randomness = dict(deterministic=False, diff_rank_seed=False, seed=None) resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=2, dataset=dict( ann_file= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/test_label.txt', data_prefix=dict( img= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_rgb_event/' ), pipeline=[ dict( clip_len=1, frame_interval=1, num_clips=8, test_mode=True, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict(crop_size=224, type='CenterCrop'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ], test_mode=True, type='RawframeDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) test_evaluator = dict(type='AccMetric') test_pipeline = [ dict( clip_len=1, frame_interval=1, num_clips=8, test_mode=True, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict(crop_size=224, type='CenterCrop'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ] train_cfg = dict( max_epochs=100, type='EpochBasedTrainLoop', val_begin=1, val_interval=1) train_dataloader = dict( batch_size=2, dataset=dict( ann_file= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/train_label.txt', data_prefix=dict( img= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_rgb_event/' ), pipeline=[ dict( clip_len=1, frame_interval=1, num_clips=8, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict( input_size=224, max_wh_scale_gap=1, num_fixed_crops=13, random_crop=False, scales=( 1, 0.875, 0.75, 0.66, ), type='MultiScaleCrop'), dict(keep_ratio=False, scale=( 224, 224, ), type='Resize'), dict(flip_ratio=0.5, type='Flip'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ], type='RawframeDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) train_pipeline = [ dict(clip_len=1, frame_interval=1, num_clips=8, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict( input_size=224, max_wh_scale_gap=1, num_fixed_crops=13, random_crop=False, scales=( 1, 0.875, 0.75, 0.66, ), type='MultiScaleCrop'), dict(keep_ratio=False, scale=( 224, 224, ), type='Resize'), dict(flip_ratio=0.5, type='Flip'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=2, dataset=dict( ann_file= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_list/test_label.txt', data_prefix=dict( img= '/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/dataset/Poker_Event/Poker_rgb_event/' ), pipeline=[ dict( clip_len=1, frame_interval=1, num_clips=8, test_mode=True, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict(crop_size=224, type='CenterCrop'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ], test_mode=True, type='RawframeDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='DefaultSampler')) val_evaluator = dict(type='AccMetric') val_pipeline = [ dict( clip_len=1, frame_interval=1, num_clips=8, test_mode=True, type='SampleFrames'), dict(type='RawFrameDecode'), dict(scale=( -1, 256, ), type='Resize'), dict(crop_size=224, type='CenterCrop'), dict(input_format='NCHW', type='FormatShape'), dict(type='PackActionInputs'), ] vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( type='ActionVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = './work_dirs/resnet_code'
Traceback (most recent call last):
File "/media/amax/c08a625b-023d-436f-b33e-9652dc1bc7c0/DATA/jinyu/TSM_Former-main/tools/train.py", line 136, in ActionVisualizer
is correct or it was registered as expected. More details can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#import-the-custom-module'
Additional information
No response
@jy0x4f did you find a solution, because i have the same problem with DatasetZelda. I get the same error
Have you solved this problem? Because I had the same problem
I just deleted the conda env and created the new one, and solved. I don't know what the problem was, but it really worked