OpenPCDet icon indicating copy to clipboard operation
OpenPCDet copied to clipboard

Low Acc on 3D task, in Custom datasets.

Open Mike-7777777 opened this issue 1 year ago • 1 comments

Thank you for your excellent work.

I'm trying to use OpenPCDet's customized dataset feature, but I'm finding that my models are performing particularly poorly for BEV and 3D tasks, does anyone have any idea what this might be? Or how I should troubleshoot the problem?

Another question is that when I check (visualize) custom_infos_train.pkl, I find that some labels that are outside the range of the point cloud are not removed, is this normal?

I am using the TUMTraf dataset, only the point cloud and kitti format label(no image, no cabli). You can check my custom dataset and model config files in my fork if you need.

My log file:

2024-05-20 22:53:41,738   INFO  CUDA_VISIBLE_DEVICES=0
2024-05-20 22:53:41,738   INFO  Training with a single process
2024-05-20 22:53:41,738   INFO  cfg_file         /user/<user.name>/<user.name2>/OpenPCDet/tools/cfgs/custom_models/pps.yaml
2024-05-20 22:53:41,738   INFO  batch_size       4
2024-05-20 22:53:41,738   INFO  epochs           15
2024-05-20 22:53:41,738   INFO  workers          4
2024-05-20 22:53:41,738   INFO  extra_tag        default
2024-05-20 22:53:41,738   INFO  ckpt             None
2024-05-20 22:53:41,738   INFO  pretrained_model None
2024-05-20 22:53:41,738   INFO  launcher         none
2024-05-20 22:53:41,738   INFO  tcp_port         18888
2024-05-20 22:53:41,738   INFO  sync_bn          False
2024-05-20 22:53:41,738   INFO  fix_random_seed  False
2024-05-20 22:53:41,738   INFO  ckpt_save_interval 1
2024-05-20 22:53:41,738   INFO  local_rank       None
2024-05-20 22:53:41,738   INFO  max_ckpt_save_num 30
2024-05-20 22:53:41,738   INFO  merge_all_iters_to_one_epoch False
2024-05-20 22:53:41,738   INFO  set_cfgs         None
2024-05-20 22:53:41,738   INFO  max_waiting_mins 0
2024-05-20 22:53:41,738   INFO  start_epoch      0
2024-05-20 22:53:41,738   INFO  num_epochs_to_eval 0
2024-05-20 22:53:41,738   INFO  save_to_file     False
2024-05-20 22:53:41,738   INFO  use_tqdm_to_record False
2024-05-20 22:53:41,738   INFO  logger_iter_interval 50
2024-05-20 22:53:41,739   INFO  ckpt_save_time_interval 300
2024-05-20 22:53:41,739   INFO  wo_gpu_stat      False
2024-05-20 22:53:41,739   INFO  use_amp          False
2024-05-20 22:53:41,739   INFO  cfg.ROOT_DIR: /home/uni08/hpc/<user.name>/u11423/OpenPCDet
2024-05-20 22:53:41,739   INFO  cfg.LOCAL_RANK: 0
2024-05-20 22:53:41,739   INFO  cfg.CLASS_NAMES: ['CAR', 'PEDESTRIAN', 'BICYCLE']
2024-05-20 22:53:41,739   INFO  ----------- DATA_CONFIG -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATASET: CustomDataset
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATA_PATH: ../data/custom
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [0.0, -180.0, -10.0, 153.6, 137.44, 0.0]
2024-05-20 22:53:41,739   INFO  ----------- MAP_CLASS_TO_KITTI -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.CAR: Car
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.VAN: Van
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.TRUCK: Truck
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.PEDESTRIAN: Pedestrian
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.BICYCLE: Cyclist
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.MOTORCYCLE: Misc
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.TRAILER: Misc
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.BUS: Misc
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.MAP_CLASS_TO_KITTI.EMERGENCY_VEHICLE: Misc
2024-05-20 22:53:41,739   INFO  ----------- DATA_SPLIT -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATA_SPLIT.train: train
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATA_SPLIT.test: val
2024-05-20 22:53:41,739   INFO  ----------- INFO_PATH -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.INFO_PATH.train: ['custom_infos_train.pkl']
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.INFO_PATH.test: ['custom_infos_val.pkl']
2024-05-20 22:53:41,739   INFO  ----------- POINT_FEATURE_ENCODING -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'intensity']
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'intensity']
2024-05-20 22:53:41,739   INFO  ----------- DATA_AUGMENTOR -----------
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2024-05-20 22:53:41,739   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'gt_sampling', 'USE_ROAD_PLANE': False, 'DB_INFO_PATH': ['custom_dbinfos_train.pkl'], 'PREPARE': {'filter_by_min_points': ['CAR:5', 'PEDESTRIAN:5', 'BICYCLE:5']}, 'SAMPLE_GROUPS': ['CAR:15', 'PEDESTRIAN:15', 'BICYCLE:15'], 'NUM_POINT_FEATURES': 4, 'DATABASE_WITH_FAKELIDAR': False, 'REMOVE_EXTRA_WIDTH': [0.0, 0.0, 0.0], 'LIMIT_WHOLE_SCENE': False}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.78539816, 0.78539816]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.95, 1.05]}]
2024-05-20 22:53:41,740   INFO  cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'shuffle_points', 'SHUFFLE_ENABLED': {'train': True, 'test': False}}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.64, 0.64, 10], 'MAX_POINTS_PER_VOXEL': 32, 'MAX_NUMBER_OF_VOXELS': {'train': 230000, 'test': 230000}}]
2024-05-20 22:53:41,740   INFO  cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/custom_dataset.yaml
2024-05-20 22:53:41,740   INFO  ----------- MODEL -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.NAME: PointPillar
2024-05-20 22:53:41,740   INFO  ----------- VFE -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.VFE.NAME: PillarVFE
2024-05-20 22:53:41,740   INFO  cfg.MODEL.VFE.WITH_DISTANCE: False
2024-05-20 22:53:41,740   INFO  cfg.MODEL.VFE.USE_ABSLOTE_XYZ: True
2024-05-20 22:53:41,740   INFO  cfg.MODEL.VFE.USE_NORM: True
2024-05-20 22:53:41,740   INFO  cfg.MODEL.VFE.NUM_FILTERS: [64]
2024-05-20 22:53:41,740   INFO  ----------- MAP_TO_BEV -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.MAP_TO_BEV.NAME: PointPillarScatter
2024-05-20 22:53:41,740   INFO  cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 64
2024-05-20 22:53:41,740   INFO  ----------- BACKBONE_2D -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.NAME: BaseBEVBackbone
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.LAYER_NUMS: [3, 5, 5]
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.LAYER_STRIDES: [2, 2, 2]
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.NUM_FILTERS: [64, 128, 256]
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.UPSAMPLE_STRIDES: [1, 2, 4]
2024-05-20 22:53:41,740   INFO  cfg.MODEL.BACKBONE_2D.NUM_UPSAMPLE_FILTERS: [128, 128, 128]
2024-05-20 22:53:41,740   INFO  ----------- DENSE_HEAD -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.NAME: AnchorHeadSingle
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'CAR', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'PEDESTRIAN', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'BICYCLE', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
2024-05-20 22:53:41,740   INFO  ----------- TARGET_ASSIGNER_CONFIG -----------
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
2024-05-20 22:53:41,740   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
2024-05-20 22:53:41,741   INFO  ----------- LOSS_CONFIG -----------
2024-05-20 22:53:41,741   INFO  ----------- LOSS_WEIGHTS -----------
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 2.0
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
2024-05-20 22:53:41,741   INFO  cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2024-05-20 22:53:41,741   INFO  ----------- POST_PROCESSING -----------
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
2024-05-20 22:53:41,741   INFO  ----------- NMS_CONFIG -----------
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: False
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.01
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
2024-05-20 22:53:41,741   INFO  cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
2024-05-20 22:53:41,741   INFO  ----------- OPTIMIZATION -----------
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 4
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.NUM_EPOCHS: 15
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.OPTIMIZER: adam_onecycle
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.LR: 0.003
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.WEIGHT_DECAY: 0.01
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.MOMENTUM: 0.9
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.MOMS: [0.95, 0.85]
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.PCT_START: 0.4
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.DIV_FACTOR: 10
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.DECAY_STEP_LIST: [35, 45]
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.LR_DECAY: 0.1
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.LR_CLIP: 1e-07
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.LR_WARMUP: True
2024-05-20 22:53:41,741   INFO  cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2024-05-20 22:53:41,742   INFO  cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2024-05-20 22:53:41,742   INFO  cfg.TAG: pps
2024-05-20 22:53:41,742   INFO  cfg.EXP_GROUP_PATH: user/<user.name>/u11423/OpenPCDet/tools/cfgs/custom_models
2024-05-20 22:53:41,766   INFO  ----------- Create dataloader & network & optimizer -----------
2024-05-20 22:53:42,026   INFO  Database filter by min points CAR: 31706 => 16172
2024-05-20 22:53:42,027   INFO  Database filter by min points PEDESTRIAN: 3472 => 3012
2024-05-20 22:53:42,027   INFO  Database filter by min points BICYCLE: 598 => 542
2024-05-20 22:53:42,040   INFO  Loading Custom dataset.
2024-05-20 22:53:42,101   INFO  Total samples for CUSTOM dataset: 3840
/user/<user.name>/u11423/.conda/envs/openpcd/lib/python3.8/site-packages/torch/functional.py:512: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3587.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
2024-05-20 22:53:43,713   INFO  ----------- Model PointPillar created, param count: 4834888 -----------
2024-05-20 22:53:43,713   INFO  PointPillar(
  (vfe): PillarVFE(
    (pfn_layers): ModuleList(
      (0): PFNLayer(
        (linear): Linear(in_features=10, out_features=64, bias=False)
        (norm): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
      )
    )
  )
  (backbone_3d): None
  (map_to_bev_module): PointPillarScatter()
  (pfe): None
  (backbone_2d): BaseBEVBackbone(
    (blocks): ModuleList(
      (0): Sequential(
        (0): ZeroPad2d((1, 1, 1, 1))
        (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
      )
      (1): Sequential(
        (0): ZeroPad2d((1, 1, 1, 1))
        (1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
        (13): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (14): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (15): ReLU()
        (16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (17): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (18): ReLU()
      )
      (2): Sequential(
        (0): ZeroPad2d((1, 1, 1, 1))
        (1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
        (2): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (3): ReLU()
        (4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (5): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (6): ReLU()
        (7): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (8): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (9): ReLU()
        (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (11): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (12): ReLU()
        (13): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (14): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (15): ReLU()
        (16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (17): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (18): ReLU()
      )
    )
    (deblocks): ModuleList(
      (0): Sequential(
        (0): ConvTranspose2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (1): Sequential(
        (0): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (2): Sequential(
        (0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(4, 4), bias=False)
        (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
        (2): ReLU()
      )
    )
  )
  (dense_head): AnchorHeadSingle(
    (cls_loss_func): SigmoidFocalClassificationLoss()
    (reg_loss_func): WeightedSmoothL1Loss()
    (dir_loss_func): WeightedCrossEntropyLoss()
    (conv_cls): Conv2d(384, 18, kernel_size=(1, 1), stride=(1, 1))
    (conv_box): Conv2d(384, 42, kernel_size=(1, 1), stride=(1, 1))
    (conv_dir_cls): Conv2d(384, 12, kernel_size=(1, 1), stride=(1, 1))
  )
  (point_head): None
  (roi_head): None
)
2024-05-20 22:53:43,714   INFO  **********************Start training user/<user.name>/u11423/OpenPCDet/tools/cfgs/custom_models/pps(default)**********************

2024-05-20 23:26:21,948   INFO  Train:   15/15 (100%) [ 709/960 ( 74%)]  Loss: 0.3736 (0.404)  LR: 6.273e-06  Time cost: 01:38/00:34 [32:38/00:34]  Acc_iter 14150       Data time: 0.01(0.01)  Forward time: 0.13(0.13)  Batch time: 0.14(0.14)
2024-05-20 23:26:28,645   INFO  Train:   15/15 (100%) [ 759/960 ( 79%)]  Loss: 0.4061 (0.404)  LR: 4.034e-06  Time cost: 01:44/00:27 [32:44/00:27]  Acc_iter 14200       Data time: 0.00(0.01)  Forward time: 0.13(0.13)  Batch time: 0.13(0.14)
2024-05-20 23:26:35,310   INFO  Train:   15/15 (100%) [ 809/960 ( 84%)]  Loss: 0.3798 (0.404)  LR: 2.290e-06  Time cost: 01:51/00:20 [32:51/00:20]  Acc_iter 14250       Data time: 0.00(0.01)  Forward time: 0.14(0.13)  Batch time: 0.14(0.14)
2024-05-20 23:26:35,909   INFO  agq005              Mon May 20 23:26:35 2024  530.30.02
[0] Quadro RTX 5000 | 65°C,   0 % |  3685 / 16384 MB | u11423(3682M)

2024-05-20 23:26:42,610   INFO  Train:   15/15 (100%) [ 859/960 ( 89%)]  Loss: 0.3945 (0.404)  LR: 1.041e-06  Time cost: 01:58/00:13 [32:58/00:13]  Acc_iter 14300       Data time: 0.00(0.01)  Forward time: 0.13(0.13)  Batch time: 0.13(0.14)
2024-05-20 23:26:49,242   INFO  Train:   15/15 (100%) [ 909/960 ( 95%)]  Loss: 0.3832 (0.403)  LR: 2.879e-07  Time cost: 02:05/00:07 [33:05/00:07]  Acc_iter 14350       Data time: 0.00(0.01)  Forward time: 0.13(0.13)  Batch time: 0.14(0.14)
2024-05-20 23:26:55,881   INFO  Train:   15/15 (100%) [ 959/960 (100%)]  Loss: 0.4412 (0.403)  LR: 3.010e-08  Time cost: 02:12/00:00 [33:12/00:00]  Acc_iter 14400       Data time: 0.00(0.01)  Forward time: 0.13(0.13)  Batch time: 0.13(0.14)
2024-05-20 23:26:56,471   INFO  agq005              Mon May 20 23:26:56 2024  530.30.02
[0] Quadro RTX 5000 | 65°C,   0 % |  3685 / 16384 MB | u11423(3682M)


train:   0%|          | 0/960 [02:12<?, ?it/s]

epochs: 100%|██████████| 15/15 [33:12<00:00, 132.88s/it]
epochs: 100%|██████████| 15/15 [33:12<00:00, 132.86s/it]
2024-05-20 23:26:56,686   INFO  **********************End training user/<user.name>/u11423/OpenPCDet/tools/cfgs/custom_models/pps(default)**********************



2024-05-20 23:26:56,686   INFO  **********************Start evaluation user/<user.name>/u11423/OpenPCDet/tools/cfgs/custom_models/pps(default)**********************
2024-05-20 23:26:56,855   INFO  Loading Custom dataset.
2024-05-20 23:26:56,893   INFO  Total samples for CUSTOM dataset: 480
2024-05-20 23:26:56,921   INFO  ==> Loading parameters from checkpoint /home/uni08/hpc/<user.name>/u11423/OpenPCDet/output/user/<user.name>/u11423/OpenPCDet/tools/cfgs/custom_models/pps/default/ckpt/checkpoint_epoch_15.pth to GPU
2024-05-20 23:26:57,136   INFO  ==> Checkpoint trained from version: pcdet+0.6.0+37a88e1+py4d88722
2024-05-20 23:26:57,140   INFO  ==> Done (loaded 127/127)
2024-05-20 23:26:57,143   INFO  *************** EPOCH 15 EVALUATION *****************

eval:   0%|          | 0/120 [00:00<?, ?it/s]/home/uni08/hpc/<user.name>/u11423/OpenPCDet/tools/../pcdet/ops/iou3d_nms/iou3d_nms_utils.py:66: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:78.)
  overlaps_bev = torch.cuda.FloatTensor(torch.Size((boxes_a.shape[0], boxes_b.shape[0]))).zero_()  # (N, M)

eval: 100%|██████████| 120/120 [00:05<00:00, 21.90it/s, recall_0.3=(0, 1462) / 4482]
2024-05-20 23:27:02,622   INFO  *************** Performance of EPOCH 15 *****************
2024-05-20 23:27:02,622   INFO  Generate label finished(sec_per_example: 0.0114 second).
2024-05-20 23:27:02,622   INFO  recall_roi_0.3: 0.000000
2024-05-20 23:27:02,622   INFO  recall_rcnn_0.3: 0.326194
2024-05-20 23:27:02,622   INFO  recall_roi_0.5: 0.000000
2024-05-20 23:27:02,623   INFO  recall_rcnn_0.5: 0.221776
2024-05-20 23:27:02,623   INFO  recall_roi_0.7: 0.000000
2024-05-20 23:27:02,623   INFO  recall_rcnn_0.7: 0.075859
2024-05-20 23:27:02,623   INFO  Average predicted number of objects(480 samples): 39.467
File "../pcdet/datasets/kitti/kitti_object_eval_python/eval.py", line 122:
@numba.jit(nopython=True, parallel=True)
def d3_box_overlap_kernel(boxes, qboxes, rinc, criterion=-1):
^
/user/.../.../.conda/envs/openpcd/lib/python3.8/site-packages/numba/cuda/dispatcher.py:536: NumbaPerformanceWarning: Grid size 1 will likely result in GPU under-utilization due to low occupancy.
  warn(NumbaPerformanceWarning(msg))
2024-05-20 23:27:12,674   INFO  Car [email protected], 0.70, 0.70:
bbox AP:86.2801, 86.2801, 86.2801
bev  AP:11.3636, 11.3636, 11.3636
3d   AP:9.3492, 9.3492, 9.3492
aos  AP:60.26, 60.26, 60.26
Car [email protected], 0.70, 0.70:
bbox AP:87.7226, 87.7226, 87.7226
bev  AP:5.3244, 5.3244, 5.3244
3d   AP:2.9891, 2.9891, 2.9891
aos  AP:58.33, 58.33, 58.33
Car [email protected], 0.50, 0.50:
bbox AP:86.2801, 86.2801, 86.2801
bev  AP:19.6765, 19.6765, 19.6765
3d   AP:18.0766, 18.0766, 18.0766
aos  AP:60.26, 60.26, 60.26
Car [email protected], 0.50, 0.50:
bbox AP:87.7226, 87.7226, 87.7226
bev  AP:15.1053, 15.1053, 15.1053
3d   AP:13.4069, 13.4069, 13.4069
aos  AP:58.33, 58.33, 58.33
Pedestrian [email protected], 0.50, 0.50:
bbox AP:54.9332, 54.9332, 54.9332
bev  AP:18.6798, 18.6798, 18.6798
3d   AP:5.1013, 5.1013, 5.1013
aos  AP:43.72, 43.72, 43.72
Pedestrian [email protected], 0.50, 0.50:
bbox AP:53.1667, 53.1667, 53.1667
bev  AP:14.1033, 14.1033, 14.1033
3d   AP:2.9532, 2.9532, 2.9532
aos  AP:42.44, 42.44, 42.44
Pedestrian [email protected], 0.25, 0.25:
bbox AP:54.9332, 54.9332, 54.9332
bev  AP:24.7276, 24.7276, 24.7276
3d   AP:23.5982, 23.5982, 23.5982
aos  AP:43.72, 43.72, 43.72
Pedestrian [email protected], 0.25, 0.25:
bbox AP:53.1667, 53.1667, 53.1667
bev  AP:20.6734, 20.6734, 20.6734
3d   AP:19.6189, 19.6189, 19.6189
aos  AP:42.44, 42.44, 42.44
Cyclist [email protected], 0.50, 0.50:
bbox AP:22.1108, 22.1108, 22.1108
bev  AP:2.0695, 2.0695, 2.0695
3d   AP:0.3497, 0.3497, 0.3497
aos  AP:21.56, 21.56, 21.56
Cyclist [email protected], 0.50, 0.50:
bbox AP:20.5448, 20.5448, 20.5448
bev  AP:1.1436, 1.1436, 1.1436
3d   AP:0.1923, 0.1923, 0.1923
aos  AP:19.94, 19.94, 19.94
Cyclist [email protected], 0.25, 0.25:
bbox AP:22.1108, 22.1108, 22.1108
bev  AP:3.9044, 3.9044, 3.9044
3d   AP:2.0695, 2.0695, 2.0695
aos  AP:21.56, 21.56, 21.56
Cyclist [email protected], 0.25, 0.25:
bbox AP:20.5448, 20.5448, 20.5448
bev  AP:2.2639, 2.2639, 2.2639
3d   AP:1.1436, 1.1436, 1.1436
aos  AP:19.94, 19.94, 19.94```

Mike-7777777 avatar May 22 '24 01:05 Mike-7777777

This issue is stale because it has been open for 30 days with no activity.

github-actions[bot] avatar Jun 21 '24 01:06 github-actions[bot]

This issue was closed because it has been inactive for 14 days since being marked as stale.

github-actions[bot] avatar Jul 05 '24 01:07 github-actions[bot]

have u solved the problem? If yes,how?

YouthZCC avatar Aug 04 '24 07:08 YouthZCC

is there any update?

NurbekkWARTO avatar Sep 12 '24 10:09 NurbekkWARTO