OpenPCDet
OpenPCDet copied to clipboard
Train CenterNet 4 Frames Backbone for MPPNet and Performance Doesnt Good
Hello Writer... Thank you so much for developing open source tools for SOTA 3D object detections. I am trying to recreate MPPNet performance for multiframe 3D object detection in Waymo Open Dataset... Like written in documentation first I trained CenterNet 4 frames backbone for MPPNet with default parameters like in configuration with more epochs (72 epochs).
CLASS_NAMES: ['Vehicle', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/waymo_dataset_multiframe.yaml
SAMPLED_INTERVAL: {
'train': 1,
'test': 1
}
MODEL:
NAME: CenterPoint
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelResBackBone8x
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [128, 256]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [256, 256]
DENSE_HEAD:
NAME: CenterHead
CLASS_AGNOSTIC: False
CLASS_NAMES_EACH_HEAD: [
['Vehicle', 'Pedestrian', 'Cyclist']
]
SHARED_CONV_CHANNEL: 64
USE_BIAS_BEFORE_NORM: True
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'center_z', 'dim', 'rot', 'vel']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'center_z': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'vel': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 8
NUM_MAX_OBJS: 500
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]
}
POST_PROCESSING:
SCORE_THRESH: 0.1
POST_CENTER_LIMIT_RANGE: [-75.2, -75.2, -2, 75.2, 75.2, 4]
MAX_OBJ_PER_SAMPLE: 500
NMS_CONFIG:
NMS_TYPE: nms_gpu
NMS_THRESH: 0.7
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
EVAL_METRIC: kitti #waymo
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 2
NUM_EPOCHS: 72 #72
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10
I trained the model for 200 hours and after I evaluate CenterNet performance is very bad. Because I have low memory disk I only produce ground truth points with limited size that is not all samples extracted ground truth points. The performance of Center Net 4 frames can be seen as below.
All ground truth almost become Level 2 samples because not all ground truth points I extracted because I have low memory disk. The training loss of training Center Net 4 frames also still high that is around 1.4 in the 72 epoch.
Is anyone can give me advice how to train CenterNet 4 frames in Waymo Open Dataset ? I use 20 % Waymo Open Dataset training test and not extract all ground truth points because I have low memory disk.
Is my CenterNet 4 frames doesnt do well because I dont extract all ground truth points ?
Thank you for advice and suggestions...