OpenPCDet
OpenPCDet copied to clipboard
Can not run the evaluation function successful
2022-09-22 09:36:49,204 INFO Total samples for Waymo dataset: 39987
2022-09-22 09:36:52,147 INFO ==> Loading parameters from checkpoint ../output/waymo_models/pv_rcnn_plusplus_resnet_d1/default/ckpt/checkpoint_epoch_30.pth to GPU
2022-09-22 09:36:52,486 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000
2022-09-22 09:36:52,521 INFO ==> Done (loaded 507/507)
2022-09-22 09:36:52,539 INFO *************** EPOCH 30 EVALUATION *****************
eval: 100%|█| 9997/9997 [54:32<00:00, 3.05it/s, recall_0.3=(514650, 515247) / 1
2022-09-22 10:31:25,011 INFO *************** Performance of EPOCH 30 *****************
2022-09-22 10:31:25,012 INFO Generate label finished(sec_per_example: 0.0818 second).
2022-09-22 10:31:25,012 INFO recall_roi_0.3: 0.285802
2022-09-22 10:31:25,012 INFO recall_rcnn_0.3: 0.286134
2022-09-22 10:31:25,012 INFO recall_roi_0.5: 0.244660
2022-09-22 10:31:25,012 INFO recall_rcnn_0.5: 0.248518
2022-09-22 10:31:25,012 INFO recall_roi_0.7: 0.122996
2022-09-22 10:31:25,012 INFO recall_rcnn_0.7: 0.135234
2022-09-22 10:31:25,041 INFO Average predicted number of objects(39987 samples): 15.276
2022-09-22 10:31:28.316264: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
Start the waymo evaluation...
Number: (pd, 610836) VS. (gt, 1630510)
Level 1: 1377451, Level2: 253059)
WARNING:tensorflow:From /opt/anaconda3/lib/python3.8/contextlib.py:83: TensorFlowTestCase.test_session (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use self.session() or self.cached_session() instead.
2022-09-22 10:31:33.802913: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2022-09-22 10:31:33.803183: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2022-09-22 10:31:33.805971: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Found device 0 with properties:
pciBusID: 0000:41:00.0 name: GeForce RTX 3090 computeCapability: 8.6
coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
2022-09-22 10:31:33.806008: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-22 10:31:33.819510: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-09-22 10:31:33.819556: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-09-22 10:31:33.825136: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-09-22 10:31:33.825918: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-09-22 10:31:33.826491: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.11
2022-09-22 10:31:33.829262: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-09-22 10:31:33.829413: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-09-22 10:31:33.831694: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1888] Adding visible gpu devices: 0
2022-09-22 10:31:33.836754: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2022-09-22 10:31:33.837813: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Found device 0 with properties:
pciBusID: 0000:41:00.0 name: GeForce RTX 3090 computeCapability: 8.6
coreClock: 1.695GHz coreCount: 82 deviceMemorySize: 23.70GiB deviceMemoryBandwidth: 871.81GiB/s
2022-09-22 10:31:33.837856: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-22 10:31:33.837884: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2022-09-22 10:31:33.837907: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2022-09-22 10:31:33.837927: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2022-09-22 10:31:33.837948: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2022-09-22 10:31:33.837968: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.11
2022-09-22 10:31:33.837992: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2022-09-22 10:31:33.838012: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2022-09-22 10:31:33.839832: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1888] Adding visible gpu devices: 0
2022-09-22 10:31:33.840110: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2022-09-22 10:31:34.135476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1287] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-09-22 10:31:34.135556: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1293] 0
2022-09-22 10:31:34.135579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1306] 0: N
2022-09-22 10:31:34.139247: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1390 MB memory) -> physical GPU (device: 0, name: GeForce RTX 3090, pci bus id: 0000:41:00.0, compute capability: 8.6)
2022-09-22 10:31:34.147956: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)
2022-09-22 10:31:34.152004: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2595055000 Hz
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0922 10:31:34.384816 3230355 detection_metrics_ops.cc:157] Computing detection metrics for 610836 predicted boxes.
I0922 10:31:34.384877 3230355 detection_metrics_ops.cc:159] Parsing prediction [610836,7][610836]
I0922 10:31:34.574628 3230355 detection_metrics_ops.cc:168] Parsing ground truth [1630510,9][1630510]
2022-09-22 10:31:34.575550: F waymo_open_dataset/metrics/ops/utils.cc:92] Incorrect number of box DOF 9
test.sh: line 2: 3215304 Aborted (core dumped) python test.py --cfg_file cfgs/waymo_models/pv_rcnn_plusplus_resnet_d1.yaml --batch_size 4 --ckpt ../output/waymo_models/pv_rcnn_plusplus_resnet_d1/default/ckpt/checkpoint_epoch_30.pth
Hi, you should use 7-dim boxes (without speed) for evaluation and you can change pred_bbox to pred_bbox[:, :7]. The error log "Incorrect number of box DOF 9" means your boxes is 9-dim (with speed).
Hi, where can I change the pred_bbox to pred_bbox[:, :7]? @Cedarch
Line 64 and 71 in OpenPCDet/pcdet/datasets/waymo/waymo_eval.py
Thank you. I have finished the evaluattion, but the results are very bad (model: PV-RCNN++ ResNet): OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/AP: 0.0436 OBJECT_TYPE_TYPE_VEHICLE_LEVEL_1/APH: 0.0422 OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/AP: 0.0373 OBJECT_TYPE_TYPE_VEHICLE_LEVEL_2/APH: 0.0361 OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/AP: 0.0626 OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_1/APH: 0.0540 OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/AP: 0.0520 OBJECT_TYPE_TYPE_PEDESTRIAN_LEVEL_2/APH: 0.0448 OBJECT_TYPE_TYPE_SIGN_LEVEL_1/AP: 0.0000 OBJECT_TYPE_TYPE_SIGN_LEVEL_1/APH: 0.0000 OBJECT_TYPE_TYPE_SIGN_LEVEL_2/AP: 0.0000 OBJECT_TYPE_TYPE_SIGN_LEVEL_2/APH: 0.0000 OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/AP: 0.3464 OBJECT_TYPE_TYPE_CYCLIST_LEVEL_1/APH: 0.3387 OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/AP: 0.3337 OBJECT_TYPE_TYPE_CYCLIST_LEVEL_2/APH: 0.3264
I am not clear why this happens. @Cedarch
This issue is stale because it has been open for 30 days with no activity.
This issue was closed because it has been inactive for 14 days since being marked as stale.