【AI实战营第二期】第一次作业提交07班
题目:基于RTMPose的耳朵穴位关键点检测
背景:
根据中医的“倒置胎儿”学说,耳朵的穴位反映了人体全身脏器的健康,耳穴按摩可以缓解失眠多梦、内分泌失调等疾病。耳朵面积较小,但穴位密集,涉及耳舟、耳轮、三角窝、耳甲艇、对耳轮等三维轮廓,普通人难以精准定位耳朵穴位。
任务
- 1.Labelme标注关键点检测数据集
- 2.划分训练集和测试集
- 3.Labelme标注转MS COCO格式
- 4.使用MMDetection算法库,训练RTMDet耳朵目标检测算法,提交测试集评估指标
- 5.使用MMPose算法库,训练RTMPose耳朵关键点检测算法,提交测试集评估指标
- 6.用自己耳朵的图像预测,将预测结果保存
- 7.用自己耳朵的视频预测,将预测结果保存
【4-7任务完成提交】 提交测试集评估指标(不能低于baseline指标的50%) 并使用训练的模型对自己的数据进行预测并保存呈现结果(可采用notebook或者输出图片和视频的形式呈现)。
【参考提交方法和格式】 【提交链接】issue 24 comment 【作业目录】2.Basic_mmdet3.x_V2
PS:任务1,2,3,示例代码作者子豪兄已经提供
目标检测Baseline模型(RTMDet-tiny)
关键点检测Baseline模型(RTMPose-s)
数据集
耳朵穴位关键点检测数据集,MS COCO格式,划分好了训练集和测试集,并写好了样例config配置文件
链接: https://pan.baidu.com/s/1swTLpArj7XEDXW4d0lo7Mg 提取码: 741p
标注人:张子豪、田文博
提交方式
请将作业内容上传到你自己的github仓库,并把对应的链接回复在评论区
We recommend using English or English & Chinese for issues so that we could have broader discussion.
https://github.com/JeffDing/mmlabcamp/tree/main/第二期
Homework1.ipynb 课程的所有记录
图像及输出目录在mmpose/output目录下
pth文件存在百度网盘: 链接: https://pan.baidu.com/s/1p4xij8m3byJAl-ZzAXPHrQ?pwd=rzim 提取码: rzim
https://github.com/xixihic/openmmlabhomework/tree/master 本次训练的配置文件在mmpose/config目录下 输出结果在mmpose/result目录下 测试指标在mmpose/test目录下 由于无法拍摄可用的耳朵照片及视频,所以使用网上的照片进行测试,无视频
Github link openmmlab2-hongNo1-Assignment
测试结果可视化
详见测试数据和结果文件夹 MyEar目录和README.md
RTMDet-tiny
best epoch: 196/200
coco/bbox_mAP: 0.8080 coco/bbox_mAP_50: 0.9700 coco/bbox_mAP_75: 0.9700
coco/bbox_mAP_s: -1.0000 coco/bbox_mAP_m: -1.0000 coco/bbox_mAP_l: 0.8080
RTMPose-s
best epoch: 255/300
coco/AP: 0.740501 coco/AP .5: 1.000000 coco/AP .75: 0.968647 coco/AP (M): -1.000000 coco/AP (L): 0.740501
coco/AR: 0.780952 coco/AR .5: 1.000000 coco/AR .75: 0.976190 coco/AR (M): -1.000000 coco/AR (L): 0.780952
PCK: 0.975057 AUC: 0.137925 NME: 0.040603
测试图片和视频
单张图片和两个测试视频
输出结果如下
RTMDet-tiny
RTMPose-s
代码Notebook
- 01Ear目标检测-训练RTMDet.ipynb
- 02Ear目标检测-可视化训练日志.ipynb
- 03Ear目标检测-模型权重文件精简转换.ipynb
- 04Ear目标检测-预测.ipynb
- 05Ear关键点检测-训练RTMPose.ipynb
- 06Ear关键点检测-可视化训练日志.ipynb
- 07Ear关键点检测预测-命令行.ipynb
- 08Ear关键点检测预测-Python API.ipynb
训练权重
-
RTMDet-tiny模型权重 best_coco_bbox_mAP_epoch_196.pth
-
RTMPose-s模型权重 best_PCK_epoch_255.pth
对应的模型轻量化转换权重
知乎笔记链接
【七班】MMPose代码实践与耳朵穴位数据集实战【OpenMMLab AI实战营第二期Day3】 【CSDN】Version
推理结果:作业/mmpose/outputs mmdet训练结果:mmdetection mmpose训练结果:mmpose
mmdet 指标
DONE (t=0.02s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.537
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.954
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.501
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.537
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.650
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.650
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.650
06/04 21:46:45 - mmengine - INFO - bbox_mAP_copypaste: 0.537 0.954 0.501 -1.000 -1.000 0.537
06/04 21:46:45 - mmengine - INFO - Epoch(val) [50][2/2] coco/bbox_mAP: 0.5370 coco/bbox_mAP_50: 0.9540 coco/bbox_mAP_75: 0.5010 coco/bbox_mAP_s: -1.0000 coco/bbox_mAP_m: -1.0000 coco/bbox_mAP_l: 0.5370 data_time: 2.0657 time: 2.1472
mmpose 指标
DONE (t=0.00s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.741
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 1.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.970
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.741
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.793
Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ] = 1.000
Average Recall (AR) @[ IoU=0.75 | area= all | maxDets= 20 ] = 0.976
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.793
06/05 01:37:52 - mmengine - INFO - Evaluating PCKAccuracy (normalized by ``"bbox_size"``)...
06/05 01:37:52 - mmengine - INFO - Evaluating AUC...
06/05 01:37:52 - mmengine - INFO - Evaluating NME...
06/05 01:37:52 - mmengine - INFO - Epoch(val) [200][6/6] coco/AP: 0.740731 coco/AP .5: 1.000000 coco/AP .75: 0.970297 coco/AP (M): -1.000000 coco/AP (L): 0.740731 coco/AR: 0.792857 coco/AR .5: 1.000000 coco/AR .75: 0.976190 coco/AR (M): -1.000000 coco/AR (L): 0.792857 PCK: 0.975057 AUC: 0.141893 NME: 0.039382 data_time: 0.408166 time: 0.432510
06/05 01:37:52 - mmengine - INFO - The previous best checkpoint /data/run01/scz0brk/openmmlab/mmpose/work_dirs/rtmpose-s-ear/best_PCK_epoch_170.pth is removed
https://colab.research.google.com/drive/1ImgMdbXAtLu16rOD3XvjnB7FGTCOLsbk?usp=sharing 太忙了先放个colab链接 有时间再补上
先放个作业地址https://github.com/shaohua-pan/openmmlab-hw
在出差,先放个作业地址https://github.com/hjy-pan/openmmlab-hjy
大佬您好,很精彩的实战。我也在尝试耳穴识别,但是您发的耳朵穴位关键点检测数据集链接已过期,能否在文章更新下或私信发下新的下载链接,感谢!