[Phase 3] Implement 3D AI Point Clouds and Neural Radiance Fields
Problem
COMPLETELY MISSING: 3D understanding, point cloud processing, and novel view synthesis.
Missing Implementations
Point Cloud Processing (CRITICAL):
- PointNet (direct point cloud processing)
- PointNet++ (hierarchical feature learning)
- DGCNN (Dynamic Graph CNN for point clouds)
3D Representation (CRITICAL):
- NeRF (Neural Radiance Fields)
- Instant-NGP (fast NeRF)
- 3D Gaussian Splatting (new SOTA)
Tasks (HIGH):
- Point cloud classification
- Point cloud segmentation
- 3D object detection
- Novel view synthesis
Use Cases
- Autonomous driving (LIDAR)
- Robotics
- AR/VR
- 3D reconstruction
Architecture
- src/PointCloud/
- src/NeuralRadianceFields/
- Integration with existing vision models
Success Criteria
- ModelNet40, ShapeNet benchmarks
- Real-time rendering (Gaussian Splatting)
- PSNR/SSIM metrics for NeRF
Issue #399: Junior Developer Implementation Guide
3D AI Models (NeRF, PointNet, MeshCNN)
Table of Contents
- Understanding the Problem
- 3D Representation Fundamentals
- Architecture Overview
- Implementation Strategy
- Testing Strategy
- Step-by-Step Implementation Guide
Understanding the Problem
What Are We Building?
We're implementing support for 3D AI models that can:
- 3D Object Classification: Recognize objects from 3D shapes (PointNet)
- 3D Scene Reconstruction: Build 3D scenes from 2D images (NeRF)
- 3D Shape Analysis: Process mesh structures (MeshCNN)
- 3D Segmentation: Identify parts of 3D objects
- Novel View Synthesis: Generate new viewpoints of scenes
Why 3D Models Are Special
3D data requires different representations than 2D images:
- Point clouds: Unordered sets of 3D points
- Meshes: Vertices, edges, and faces forming surfaces
- Voxels: 3D grids (like 3D pixels)
- Implicit functions: Neural fields representing surfaces
- Permutation invariance: Order of points shouldn't matter
Real-World Use Cases
- Autonomous driving: Understanding 3D environment from LiDAR
- Robotics: Grasping and manipulation of objects
- AR/VR: Creating immersive 3D scenes
- Medical imaging: CT/MRI scan analysis
- Architecture: 3D building modeling
- Gaming: Procedural 3D content generation
3D Representation Fundamentals
Understanding 3D Data Formats
1. Point Clouds
/// <summary>
/// Point cloud: collection of 3D points with optional features.
/// Shape: [num_points, 3+features]
/// </summary>
/// <remarks>
/// For Beginners:
/// A point cloud is a set of 3D points in space:
/// - Each point has (x, y, z) coordinates
/// - Optional: color (R, G, B), normal vector, intensity
/// - Unordered: [point1, point2, point3] same as [point3, point1, point2]
///
/// Example from LiDAR:
/// - Car scanner shoots laser rays
/// - Each ray returns a 3D point
/// - 10,000+ points per scan
/// - Points form the shape of objects
///
/// Challenges:
/// - Irregular: not a grid like images
/// - Unordered: permutation invariance required
/// - Sparse: empty space between points
/// </remarks>
public class PointCloud<T>
{
// Shape: [num_points, channels]
// channels: 3 for XYZ, 6 for XYZ+RGB, more for normals/features
public Tensor<T> Points { get; set; } = new Tensor<T>(new[] { 0, 3 });
public int NumPoints { get; set; } // Total points
public int Channels { get; set; } // 3=XYZ, 6=XYZ+RGB, etc.
public bool HasColor { get; set; } // RGB available?
public bool HasNormals { get; set; } // Surface normals available?
// Bounding box
public (T minX, T maxX, T minY, T maxY, T minZ, T maxZ) Bounds { get; set; }
/// <summary>
/// Get XYZ coordinates only (first 3 channels).
/// </summary>
public Tensor<T> GetCoordinates()
{
var coords = new Tensor<T>(new[] { NumPoints, 3 });
for (int i = 0; i < NumPoints; i++)
{
coords[i, 0] = Points[i, 0]; // X
coords[i, 1] = Points[i, 1]; // Y
coords[i, 2] = Points[i, 2]; // Z
}
return coords;
}
/// <summary>
/// Get RGB colors (channels 3-5 if present).
/// </summary>
public Tensor<T>? GetColors()
{
if (!HasColor || Channels < 6)
return null;
var colors = new Tensor<T>(new[] { NumPoints, 3 });
for (int i = 0; i < NumPoints; i++)
{
colors[i, 0] = Points[i, 3]; // R
colors[i, 1] = Points[i, 4]; // G
colors[i, 2] = Points[i, 5]; // B
}
return colors;
}
}
2. Triangle Meshes
/// <summary>
/// Triangle mesh: vertices connected by triangular faces.
/// Common format: .obj, .stl, .ply files.
/// </summary>
/// <remarks>
/// For Beginners:
/// A mesh represents a 3D surface using:
/// - Vertices: 3D points (corners)
/// - Faces: Triangles connecting 3 vertices
/// - Edges: Lines between vertices
///
/// Example cube:
/// - 8 vertices (corners)
/// - 12 triangles (2 per face × 6 faces)
/// - 18 edges
///
/// Why triangles?
/// - Simplest polygon (always planar)
/// - Easy to render
/// - Standard in computer graphics
/// </remarks>
public class TriangleMesh<T>
{
// Vertices: [num_vertices, 3] for XYZ coordinates
public Tensor<T> Vertices { get; set; } = new Tensor<T>(new[] { 0, 3 });
// Faces: [num_faces, 3] with vertex indices
// Each face is [v1_idx, v2_idx, v3_idx]
public Tensor<int> Faces { get; set; } = new Tensor<int>(new[] { 0, 3 });
// Edges: [num_edges, 2] with vertex indices (derived from faces)
public Tensor<int> Edges { get; set; } = new Tensor<int>(new[] { 0, 2 });
// Optional: per-vertex normals (for smooth shading)
public Tensor<T>? VertexNormals { get; set; }
// Optional: per-vertex colors
public Tensor<T>? VertexColors { get; set; }
public int NumVertices => Vertices.Shape[0];
public int NumFaces => Faces.Shape[0];
public int NumEdges => Edges.Shape[0];
/// <summary>
/// Compute edges from faces (each triangle has 3 edges).
/// </summary>
public void ComputeEdges()
{
var edgeSet = new HashSet<(int, int)>();
for (int f = 0; f < NumFaces; f++)
{
int v0 = Faces[f, 0];
int v1 = Faces[f, 1];
int v2 = Faces[f, 2];
// Add edges (ensure v_min < v_max for uniqueness)
AddEdge(edgeSet, v0, v1);
AddEdge(edgeSet, v1, v2);
AddEdge(edgeSet, v2, v0);
}
Edges = new Tensor<int>(new[] { edgeSet.Count, 2 });
int idx = 0;
foreach (var (v0, v1) in edgeSet)
{
Edges[idx, 0] = v0;
Edges[idx, 1] = v1;
idx++;
}
}
private void AddEdge(HashSet<(int, int)> edges, int v0, int v1)
{
if (v0 > v1)
(v0, v1) = (v1, v0); // Ensure v0 < v1
edges.Add((v0, v1));
}
/// <summary>
/// Compute vertex normals (average of adjacent face normals).
/// </summary>
public void ComputeVertexNormals()
{
VertexNormals = new Tensor<T>(new[] { NumVertices, 3 });
// Initialize to zero
for (int v = 0; v < NumVertices; v++)
{
for (int d = 0; d < 3; d++)
{
VertexNormals[v, d] = (T)(object)0.0;
}
}
// Accumulate face normals
for (int f = 0; f < NumFaces; f++)
{
int v0 = Faces[f, 0];
int v1 = Faces[f, 1];
int v2 = Faces[f, 2];
// Get vertices
var p0 = GetVertex(v0);
var p1 = GetVertex(v1);
var p2 = GetVertex(v2);
// Compute face normal: (p1-p0) × (p2-p0)
var normal = CrossProduct(
Subtract(p1, p0),
Subtract(p2, p0));
// Add to vertex normals
for (int d = 0; d < 3; d++)
{
dynamic n = VertexNormals[v0, d];
VertexNormals[v0, d] = (T)(object)(n + normal[d]);
n = VertexNormals[v1, d];
VertexNormals[v1, d] = (T)(object)(n + normal[d]);
n = VertexNormals[v2, d];
VertexNormals[v2, d] = (T)(object)(n + normal[d]);
}
}
// Normalize
for (int v = 0; v < NumVertices; v++)
{
double norm = 0;
for (int d = 0; d < 3; d++)
{
double val = Convert.ToDouble(VertexNormals[v, d]);
norm += val * val;
}
norm = Math.Sqrt(norm);
if (norm > 1e-10)
{
for (int d = 0; d < 3; d++)
{
double val = Convert.ToDouble(VertexNormals[v, d]);
VertexNormals[v, d] = (T)(object)(val / norm);
}
}
}
}
private T[] GetVertex(int idx)
{
return new[]
{
Vertices[idx, 0],
Vertices[idx, 1],
Vertices[idx, 2]
};
}
private T[] Subtract(T[] a, T[] b)
{
return new[]
{
(T)(object)(Convert.ToDouble(a[0]) - Convert.ToDouble(b[0])),
(T)(object)(Convert.ToDouble(a[1]) - Convert.ToDouble(b[1])),
(T)(object)(Convert.ToDouble(a[2]) - Convert.ToDouble(b[2]))
};
}
private T[] CrossProduct(T[] a, T[] b)
{
double ax = Convert.ToDouble(a[0]);
double ay = Convert.ToDouble(a[1]);
double az = Convert.ToDouble(a[2]);
double bx = Convert.ToDouble(b[0]);
double by = Convert.ToDouble(b[1]);
double bz = Convert.ToDouble(b[2]);
return new[]
{
(T)(object)(ay * bz - az * by),
(T)(object)(az * bx - ax * bz),
(T)(object)(ax * by - ay * bx)
};
}
}
3. Voxel Grids
/// <summary>
/// Voxel grid: 3D grid of occupied/empty cells (like 3D pixels).
/// Shape: [depth, height, width] or [depth, height, width, channels]
/// </summary>
/// <remarks>
/// For Beginners:
/// Voxels are 3D pixels:
/// - Grid divides space into small cubes
/// - Each cube (voxel) is either filled or empty
/// - Like Minecraft blocks
///
/// Example: 32×32×32 voxel grid
/// - 32,768 voxels total
/// - Each voxel: 1 = occupied, 0 = empty
/// - Forms a 3D shape
///
/// Pros:
/// - Regular structure (easy to process with 3D CNNs)
/// - Simple representation
///
/// Cons:
/// - Memory intensive (32³ = 32,768 voxels)
/// - Fixed resolution
/// - Sparse (most voxels are empty)
/// </remarks>
public class VoxelGrid<T>
{
// Shape: [depth, height, width] for binary occupancy
// Or: [depth, height, width, channels] for features
public Tensor<T> Grid { get; set; } = new Tensor<T>(new[] { 32, 32, 32 });
public int Depth { get; set; }
public int Height { get; set; }
public int Width { get; set; }
public int Channels { get; set; } // 1 for binary, >1 for features
// Real-world bounding box
public (double minX, double maxX) BoundsX { get; set; }
public (double minY, double maxY) BoundsY { get; set; }
public (double minZ, double maxZ) BoundsZ { get; set; }
public double VoxelSize { get; set; } // Size of each voxel in world units
/// <summary>
/// Check if a voxel at (d, h, w) is occupied.
/// </summary>
public bool IsOccupied(int d, int h, int w)
{
if (d < 0 || d >= Depth || h < 0 || h >= Height || w < 0 || w >= Width)
return false;
double val = Convert.ToDouble(Grid[d, h, w]);
return val > 0.5;
}
/// <summary>
/// Convert 3D world coordinates to voxel indices.
/// </summary>
public (int d, int h, int w) WorldToVoxel(double x, double y, double z)
{
int d = (int)((z - BoundsZ.minZ) / VoxelSize);
int h = (int)((y - BoundsY.minY) / VoxelSize);
int w = (int)((x - BoundsX.minX) / VoxelSize);
return (d, h, w);
}
/// <summary>
/// Convert voxel indices to 3D world coordinates (center of voxel).
/// </summary>
public (double x, double y, double z) VoxelToWorld(int d, int h, int w)
{
double x = BoundsX.minX + (w + 0.5) * VoxelSize;
double y = BoundsY.minY + (h + 0.5) * VoxelSize;
double z = BoundsZ.minZ + (d + 0.5) * VoxelSize;
return (x, y, z);
}
}
4. Neural Radiance Fields (Implicit Representation)
/// <summary>
/// Neural Radiance Field (NeRF): implicit 3D representation.
/// Maps (x, y, z, theta, phi) → (r, g, b, density).
/// </summary>
/// <remarks>
/// For Beginners:
/// NeRF represents 3D scenes as a continuous function:
/// - Input: 3D position (x, y, z) + viewing direction (theta, phi)
/// - Output: Color (RGB) + density (opacity)
///
/// Instead of storing voxels or meshes, NeRF uses a neural network:
/// - Network learns the function
/// - Can query any point in 3D space
/// - Infinitely high resolution (continuous)
///
/// How it works:
/// 1. For each pixel in an image:
/// 2. Cast a ray through the pixel
/// 3. Sample points along the ray
/// 4. Query NeRF network at each point
/// 5. Composite colors/densities → pixel color
///
/// Applications:
/// - Novel view synthesis (new camera angles)
/// - 3D reconstruction from images
/// - Virtual tours
/// </remarks>
public class NeuralRadianceField<T>
{
// Position encoding network
private readonly PositionalEncoder<T> _posEncoder;
// Direction encoding network
private readonly PositionalEncoder<T> _dirEncoder;
// MLP for density and features
private readonly MultilayerPerceptron<T> _densityMLP;
// MLP for RGB color
private readonly MultilayerPerceptron<T> _colorMLP;
public NeuralRadianceField(
int posEncodingLevels = 10,
int dirEncodingLevels = 4,
int hiddenSize = 256,
int numLayers = 8)
{
Guard.Positive(hiddenSize, nameof(hiddenSize));
Guard.Positive(numLayers, nameof(numLayers));
// Positional encoding for XYZ (higher frequency = finer details)
_posEncoder = new PositionalEncoder<T>(
inputDim: 3, // XYZ
numFrequencies: posEncodingLevels);
// Positional encoding for viewing direction (lower frequency)
_dirEncoder = new PositionalEncoder<T>(
inputDim: 3, // Direction vector
numFrequencies: dirEncodingLevels);
int posEncodedDim = 3 * 2 * posEncodingLevels; // sin+cos for each frequency
int dirEncodedDim = 3 * 2 * dirEncodingLevels;
// MLP: encoded_pos → density + features
_densityMLP = new MultilayerPerceptron<T>(
inputSize: posEncodedDim,
hiddenSizes: Enumerable.Repeat(hiddenSize, numLayers).ToArray(),
outputSize: hiddenSize + 1, // +1 for density
activation: "relu");
// MLP: features + encoded_dir → RGB
_colorMLP = new MultilayerPerceptron<T>(
inputSize: hiddenSize + dirEncodedDim,
hiddenSizes: new[] { hiddenSize / 2 },
outputSize: 3, // RGB
activation: "relu");
}
/// <summary>
/// Query the radiance field at a 3D point with viewing direction.
/// </summary>
/// <param name="position">3D position (x, y, z).</param>
/// <param name="direction">Viewing direction (normalized).</param>
/// <returns>RGB color and density.</returns>
public (Tensor<T> rgb, T density) Query(Tensor<T> position, Tensor<T> direction)
{
Guard.NotNull(position, nameof(position));
Guard.NotNull(direction, nameof(direction));
// position: [batch, 3]
// direction: [batch, 3]
// Step 1: Positional encoding
var encodedPos = _posEncoder.Forward(position);
var encodedDir = _dirEncoder.Forward(direction);
// Step 2: Predict density and features from position
var densityAndFeatures = _densityMLP.Forward(encodedPos);
// Split: last channel is density, rest are features
int batchSize = densityAndFeatures.Shape[0];
int featureDim = densityAndFeatures.Shape[1] - 1;
var features = new Tensor<T>(new[] { batchSize, featureDim });
var density = new Tensor<T>(new[] { batchSize });
for (int b = 0; b < batchSize; b++)
{
density[b] = densityAndFeatures[b, featureDim]; // Last channel
for (int d = 0; d < featureDim; d++)
{
features[b, d] = densityAndFeatures[b, d];
}
}
// Apply activation to density (ensure non-negative)
density = ReLU(density);
// Step 3: Predict RGB from features and viewing direction
var combined = Concatenate(features, encodedDir);
var rgb = _colorMLP.Forward(combined);
// Apply sigmoid to RGB (ensure [0, 1] range)
rgb = Sigmoid(rgb);
return (rgb, density[0]); // Simplified - return first batch item
}
private Tensor<T> ReLU(Tensor<T> x)
{
var result = x.Clone();
for (int i = 0; i < x.Size; i++)
{
double val = Convert.ToDouble(x.Data[i]);
result.Data[i] = (T)(object)Math.Max(0, val);
}
return result;
}
private Tensor<T> Sigmoid(Tensor<T> x)
{
var result = x.Clone();
for (int i = 0; i < x.Size; i++)
{
double val = Convert.ToDouble(x.Data[i]);
result.Data[i] = (T)(object)(1.0 / (1.0 + Math.Exp(-val)));
}
return result;
}
private Tensor<T> Concatenate(Tensor<T> a, Tensor<T> b)
{
// Concatenate along last dimension
int batch = a.Shape[0];
int dimA = a.Shape[1];
int dimB = b.Shape[1];
var result = new Tensor<T>(new[] { batch, dimA + dimB });
for (int i = 0; i < batch; i++)
{
for (int j = 0; j < dimA; j++)
{
result[i, j] = a[i, j];
}
for (int j = 0; j < dimB; j++)
{
result[i, dimA + j] = b[i, j];
}
}
return result;
}
}
/// <summary>
/// Positional encoding: map continuous values to high-frequency features.
/// Used in NeRF to help network represent high-frequency details.
/// </summary>
public class PositionalEncoder<T>
{
private readonly int _inputDim;
private readonly int _numFrequencies;
public PositionalEncoder(int inputDim, int numFrequencies)
{
Guard.Positive(inputDim, nameof(inputDim));
Guard.Positive(numFrequencies, nameof(numFrequencies));
_inputDim = inputDim;
_numFrequencies = numFrequencies;
}
public Tensor<T> Forward(Tensor<T> x)
{
// x: [batch, input_dim]
// Output: [batch, input_dim * 2 * num_frequencies]
int batch = x.Shape[0];
int outputDim = _inputDim * 2 * _numFrequencies;
var encoded = new Tensor<T>(new[] { batch, outputDim });
for (int b = 0; b < batch; b++)
{
int idx = 0;
for (int d = 0; d < _inputDim; d++)
{
double val = Convert.ToDouble(x[b, d]);
for (int freq = 0; freq < _numFrequencies; freq++)
{
double frequency = Math.Pow(2, freq) * Math.PI;
// sin(2^freq * pi * x)
encoded[b, idx++] = (T)(object)Math.Sin(frequency * val);
// cos(2^freq * pi * x)
encoded[b, idx++] = (T)(object)Math.Cos(frequency * val);
}
}
}
return encoded;
}
}
Architecture Overview
Model Taxonomy
3D AI Models
├── Point Cloud Models (Unordered points)
│ ├── PointNet (Permutation-invariant classification)
│ ├── PointNet++ (Hierarchical feature learning)
│ ├── DGCNN (Dynamic Graph CNN)
│ └── Point Transformer
│
├── Mesh Models (Vertices + faces)
│ ├── MeshCNN (Convolutions on edges)
│ ├── MeshNet (Face-based features)
│ └── SpiralNet (Spiral convolutions)
│
├── Voxel Models (3D grids)
│ ├── 3D CNN (Standard convolutions)
│ ├── VoxNet (Voxel-based classification)
│ └── OctNet (Hierarchical octrees)
│
└── Implicit Models (Neural fields)
├── NeRF (Neural Radiance Fields)
├── DeepSDF (Signed Distance Functions)
└── Occupancy Networks
PointNet Architecture
/// <summary>
/// PointNet: Deep learning on point sets for 3D classification and segmentation.
/// Key innovation: Permutation invariance via max pooling.
/// </summary>
/// <remarks>
/// For Beginners:
/// PointNet processes unordered point clouds directly:
///
/// Problem: Point order shouldn't matter
/// - [p1, p2, p3] should give same result as [p3, p1, p2]
///
/// Solution: Symmetric function (max pooling)
/// 1. Transform each point independently (shared MLP)
/// 2. Pool features across all points (max pooling)
/// 3. Global feature is permutation-invariant
///
/// Architecture:
/// Input: [batch, num_points, 3] (XYZ coordinates)
/// → Input Transform (learn optimal rotation)
/// → Shared MLP: [3] → [64] → [64]
/// → Feature Transform (align features)
/// → Shared MLP: [64] → [128] → [1024]
/// → Max Pool: [batch, num_points, 1024] → [batch, 1024]
/// → Classification MLP: [1024] → [512] → [256] → [num_classes]
///
/// Why it works:
/// - max(f(p1), f(p2), ..., f(pN)) is same for any order
/// - Each point processed independently (shared weights)
/// - Global context from max pooling
/// </remarks>
public class PointNetModel<T> : IPointCloudModel<T>
{
private readonly PointNetConfig _config;
private readonly TransformNet<T> _inputTransform;
private readonly SharedMLP<T> _mlp1;
private readonly TransformNet<T> _featureTransform;
private readonly SharedMLP<T> _mlp2;
private readonly MaxPooling<T> _globalPooling;
private readonly MultilayerPerceptron<T> _classificationHead;
public PointNetModel(PointNetConfig config)
{
Guard.NotNull(config, nameof(config));
_config = config;
// Input transform: learn 3×3 rotation matrix
_inputTransform = new TransformNet<T>(
inputDim: 3,
outputDim: 3);
// First MLP: 3 → 64 → 64
_mlp1 = new SharedMLP<T>(
inputSize: 3,
hiddenSizes: new[] { 64, 64 },
activation: "relu");
// Feature transform: learn 64×64 transformation
_featureTransform = new TransformNet<T>(
inputDim: 64,
outputDim: 64);
// Second MLP: 64 → 128 → 1024
_mlp2 = new SharedMLP<T>(
inputSize: 64,
hiddenSizes: new[] { 128, 1024 },
activation: "relu");
// Max pooling over points
_globalPooling = new MaxPooling<T>(axis: 1); // Pool over num_points
// Classification head: 1024 → 512 → 256 → num_classes
_classificationHead = new MultilayerPerceptron<T>(
inputSize: 1024,
hiddenSizes: new[] { 512, 256 },
outputSize: config.NumClasses,
activation: "relu");
}
public PointCloudOutput<T> Forward(PointCloud<T> pointCloud)
{
Guard.NotNull(pointCloud, nameof(pointCloud));
// Get coordinates: [batch, num_points, 3]
var points = pointCloud.Points;
// Step 1: Input transform (align input)
var transformMatrix = _inputTransform.Forward(points);
var transformedPoints = ApplyTransform(points, transformMatrix);
// Step 2: First MLP (point-wise features)
var features1 = _mlp1.Forward(transformedPoints);
// features1: [batch, num_points, 64]
// Step 3: Feature transform (align features)
var featureMatrix = _featureTransform.Forward(features1);
var transformedFeatures = ApplyTransform(features1, featureMatrix);
// Step 4: Second MLP (higher-level features)
var features2 = _mlp2.Forward(transformedFeatures);
// features2: [batch, num_points, 1024]
// Step 5: Global max pooling (permutation-invariant)
var globalFeatures = _globalPooling.Forward(features2);
// globalFeatures: [batch, 1024]
// Step 6: Classification
var logits = _classificationHead.Forward(globalFeatures);
return new PointCloudOutput<T>
{
Logits = logits,
GlobalFeatures = globalFeatures,
PointFeatures = features2
};
}
private Tensor<T> ApplyTransform(Tensor<T> points, Tensor<T> matrix)
{
// points: [batch, num_points, dim]
// matrix: [batch, dim, dim]
// result: [batch, num_points, dim]
int batch = points.Shape[0];
int numPoints = points.Shape[1];
int dim = points.Shape[2];
var result = new Tensor<T>(points.Shape);
for (int b = 0; b < batch; b++)
{
for (int p = 0; p < numPoints; p++)
{
for (int i = 0; i < dim; i++)
{
dynamic sum = (T)(object)0.0;
for (int j = 0; j < dim; j++)
{
sum += points[b, p, j] * matrix[b, i, j];
}
result[b, p, i] = (T)(object)sum;
}
}
}
return result;
}
}
public class PointNetConfig
{
public int NumClasses { get; set; } = 40; // ModelNet40
public bool UseFeatureTransform { get; set; } = true;
}
TransformNet (T-Net)
/// <summary>
/// T-Net: Learns transformation matrix to align inputs/features.
/// Ensures invariance to geometric transformations.
/// </summary>
public class TransformNet<T>
{
private readonly int _inputDim;
private readonly int _outputDim;
private readonly SharedMLP<T> _mlp;
private readonly MaxPooling<T> _pooling;
private readonly MultilayerPerceptron<T> _fcLayers;
public TransformNet(int inputDim, int outputDim)
{
Guard.Positive(inputDim, nameof(inputDim));
Guard.Positive(outputDim, nameof(outputDim));
_inputDim = inputDim;
_outputDim = outputDim;
// Shared MLP for point-wise features
_mlp = new SharedMLP<T>(
inputSize: inputDim,
hiddenSizes: new[] { 64, 128, 1024 },
activation: "relu");
// Max pooling over points
_pooling = new MaxPooling<T>(axis: 1);
// FC layers to predict transformation matrix
_fcLayers = new MultilayerPerceptron<T>(
inputSize: 1024,
hiddenSizes: new[] { 512, 256 },
outputSize: outputDim * outputDim,
activation: "relu");
}
public Tensor<T> Forward(Tensor<T> points)
{
// points: [batch, num_points, input_dim]
// Extract features
var features = _mlp.Forward(points);
// features: [batch, num_points, 1024]
// Global pooling
var globalFeatures = _pooling.Forward(features);
// globalFeatures: [batch, 1024]
// Predict transformation matrix
var matrixFlat = _fcLayers.Forward(globalFeatures);
// matrixFlat: [batch, output_dim * output_dim]
// Reshape to matrix and add identity
int batch = matrixFlat.Shape[0];
var matrix = new Tensor<T>(new[] { batch, _outputDim, _outputDim });
for (int b = 0; b < batch; b++)
{
for (int i = 0; i < _outputDim; i++)
{
for (int j = 0; j < _outputDim; j++)
{
int idx = i * _outputDim + j;
double val = Convert.ToDouble(matrixFlat[b, idx]);
// Add identity matrix (helps training stability)
if (i == j)
val += 1.0;
matrix[b, i, j] = (T)(object)val;
}
}
}
return matrix;
}
}
MeshCNN Architecture
/// <summary>
/// MeshCNN: Convolutional neural network for triangle meshes.
/// Operates on edges (unique to each mesh architecture).
/// </summary>
/// <remarks>
/// For Beginners:
/// MeshCNN processes meshes using edge-based convolutions:
///
/// Key idea: Edges are the fundamental unit
/// - Each edge connects two triangles
/// - Edge features: dihedral angle, edge length, etc.
/// - Convolution: aggregate features from neighboring edges
///
/// Edge pooling (like max pooling for images):
/// - Collapse edges to reduce mesh complexity
/// - Similar to image downsampling
/// - Maintains mesh connectivity
///
/// Architecture:
/// Input: Mesh with N edges
/// → Edge feature extraction (5 features per edge)
/// → Mesh Conv blocks (learn edge features)
/// → Edge pooling (reduce from N to N/2 edges)
/// → More conv blocks
/// → Global pooling
/// → Classification
///
/// Applications:
/// - 3D shape classification
/// - Mesh segmentation (label each face)
/// - Shape correspondence
/// </remarks>
public class MeshCNNModel<T> : IMeshModel<T>
{
private readonly MeshCNNConfig _config;
private readonly EdgeFeatureExtractor<T> _featureExtractor;
private readonly List<MeshConvBlock<T>> _convBlocks;
private readonly List<EdgePooling<T>> _poolingLayers;
private readonly GlobalPooling<T> _globalPooling;
private readonly MultilayerPerceptron<T> _classifier;
public MeshCNNModel(MeshCNNConfig config)
{
Guard.NotNull(config, nameof(config));
_config = config;
// Extract initial edge features
_featureExtractor = new EdgeFeatureExtractor<T>();
// Convolution and pooling blocks
_convBlocks = new List<MeshConvBlock<T>>();
_poolingLayers = new List<EdgePooling<T>>();
int currentChannels = 5; // Initial edge features
foreach (int channels in config.ConvChannels)
{
_convBlocks.Add(new MeshConvBlock<T>(
inChannels: currentChannels,
outChannels: channels));
_poolingLayers.Add(new EdgePooling<T>(
targetReduction: 0.5)); // Reduce by 50%
currentChannels = channels;
}
// Global pooling over all edges
_globalPooling = new GlobalPooling<T>();
// Classification head
_classifier = new MultilayerPerceptron<T>(
inputSize: currentChannels,
hiddenSizes: new[] { 256, 128 },
outputSize: config.NumClasses,
activation: "relu");
}
public MeshOutput<T> Forward(TriangleMesh<T> mesh)
{
Guard.NotNull(mesh, nameof(mesh));
// Step 1: Extract edge features
var edgeFeatures = _featureExtractor.Extract(mesh);
// edgeFeatures: [num_edges, 5]
var currentMesh = mesh;
var currentFeatures = edgeFeatures;
// Step 2: Apply conv and pooling blocks
for (int i = 0; i < _convBlocks.Count; i++)
{
// Convolution
currentFeatures = _convBlocks[i].Forward(
currentMesh,
currentFeatures);
// Pooling (reduces mesh complexity)
(currentMesh, currentFeatures) = _poolingLayers[i].Forward(
currentMesh,
currentFeatures);
}
// Step 3: Global pooling
var globalFeatures = _globalPooling.Forward(currentFeatures);
// globalFeatures: [1, channels]
// Step 4: Classification
var logits = _classifier.Forward(globalFeatures);
return new MeshOutput<T>
{
Logits = logits,
GlobalFeatures = globalFeatures,
EdgeFeatures = currentFeatures
};
}
}
public class MeshCNNConfig
{
public int[] ConvChannels { get; set; } = new[] { 32, 64, 128, 256 };
public int NumClasses { get; set; } = 30; // SHREC dataset
}
EdgeFeatureExtractor
/// <summary>
/// Extracts geometric features from mesh edges.
/// Features: dihedral angle, edge length, edge ratios, etc.
/// </summary>
public class EdgeFeatureExtractor<T>
{
public Tensor<T> Extract(TriangleMesh<T> mesh)
{
Guard.NotNull(mesh, nameof(mesh));
if (mesh.Edges.Shape[0] == 0)
{
mesh.ComputeEdges();
}
int numEdges = mesh.NumEdges;
// 5 features per edge:
// 1. Dihedral angle (angle between adjacent faces)
// 2. Edge length
// 3. Edge length ratio to adjacent edges
// 4-5. Additional geometric features
var features = new Tensor<T>(new[] { numEdges, 5 });
for (int e = 0; e < numEdges; e++)
{
int v0 = mesh.Edges[e, 0];
int v1 = mesh.Edges[e, 1];
// Feature 1: Dihedral angle
double dihedralAngle = ComputeDihedralAngle(mesh, v0, v1);
features[e, 0] = (T)(object)dihedralAngle;
// Feature 2: Edge length
double edgeLength = ComputeEdgeLength(mesh, v0, v1);
features[e, 1] = (T)(object)edgeLength;
// Features 3-5: Additional geometric properties
// (Simplified - real implementation would compute more features)
features[e, 2] = (T)(object)1.0;
features[e, 3] = (T)(object)1.0;
features[e, 4] = (T)(object)1.0;
}
return features;
}
private double ComputeDihedralAngle(TriangleMesh<T> mesh, int v0, int v1)
{
// Find two faces sharing this edge
// Compute normal vectors of both faces
// Dihedral angle = angle between normals
// Simplified - real implementation would find adjacent faces
return Math.PI / 4; // Placeholder
}
private double ComputeEdgeLength(TriangleMesh<T> mesh, int v0, int v1)
{
double dx = Convert.ToDouble(mesh.Vertices[v0, 0]) -
Convert.ToDouble(mesh.Vertices[v1, 0]);
double dy = Convert.ToDouble(mesh.Vertices[v0, 1]) -
Convert.ToDouble(mesh.Vertices[v1, 1]);
double dz = Convert.ToDouble(mesh.Vertices[v0, 2]) -
Convert.ToDouble(mesh.Vertices[v1, 2]);
return Math.Sqrt(dx * dx + dy * dy + dz * dz);
}
}
Implementation Strategy
Project Structure
src/
├── ThreeD/
│ ├── IPointCloudModel.cs
│ ├── IMeshModel.cs
│ ├── PointCloud.cs
│ ├── TriangleMesh.cs
│ ├── VoxelGrid.cs
│ └── Preprocessing/
│ ├── PointCloudNormalizer.cs
│ ├── MeshSimplifier.cs
│ └── VoxelConverter.cs
│
├── ThreeD/Models/
│ ├── PointNet/
│ │ ├── PointNetModel.cs
│ │ ├── PointNetConfig.cs
│ │ ├── TransformNet.cs
│ │ ├── SharedMLP.cs
│ │ └── PointNetProcessor.cs
│ │
│ ├── MeshCNN/
│ │ ├── MeshCNNModel.cs
│ │ ├── MeshCNNConfig.cs
│ │ ├── MeshConvBlock.cs
│ │ ├── EdgePooling.cs
│ │ └── EdgeFeatureExtractor.cs
│ │
│ └── NeRF/
│ ├── NeRFModel.cs
│ ├── NeRFConfig.cs
│ ├── VolumeRenderer.cs
│ ├── RayCaster.cs
│ └── PositionalEncoder.cs
│
└── ThreeD/Utils/
├── PointCloudIO.cs (Load/save .ply, .pcd)
├── MeshIO.cs (Load/save .obj, .stl)
├── GeometricUtils.cs
└── Visualization.cs
Testing Strategy
Unit Tests
namespace AiDotNetTests.ThreeD;
public class PointCloudTests
{
[Fact]
public void PointCloud_GetCoordinates_ReturnsXYZ()
{
// Arrange
var pointCloud = CreateTestPointCloud(numPoints: 100);
// Act
var coords = pointCloud.GetCoordinates();
// Assert
Assert.NotNull(coords);
Assert.Equal(100, coords.Shape[0]);
Assert.Equal(3, coords.Shape[1]); // XYZ
}
[Fact]
public void PointNet_ProcessPointCloud_ReturnsLogits()
{
// Arrange
var config = new PointNetConfig { NumClasses = 40 };
var model = new PointNetModel<double>(config);
var pointCloud = CreateTestPointCloud(numPoints: 1024);
// Act
var output = model.Forward(pointCloud);
// Assert
Assert.NotNull(output.Logits);
Assert.Equal(40, output.Logits.Shape[1]); // 40 classes
}
private PointCloud<double> CreateTestPointCloud(int numPoints)
{
var points = new Tensor<double>(new[] { numPoints, 3 });
// Generate random points
var random = new Random();
for (int i = 0; i < numPoints; i++)
{
points[i, 0] = random.NextDouble(); // X
points[i, 1] = random.NextDouble(); // Y
points[i, 2] = random.NextDouble(); // Z
}
return new PointCloud<double>
{
Points = points,
NumPoints = numPoints,
Channels = 3
};
}
}
Step-by-Step Implementation Guide
Phase 1: Core 3D Infrastructure (8 hours)
AC 1.1: 3D Data Structures
Files:
-
src/ThreeD/PointCloud.cs -
src/ThreeD/TriangleMesh.cs -
src/ThreeD/VoxelGrid.cs
AC 1.2: Preprocessing
Files:
-
src/ThreeD/Preprocessing/PointCloudNormalizer.cs -
src/ThreeD/Preprocessing/MeshSimplifier.cs
Tests: tests/ThreeD/PreprocessingTests.cs
Phase 2: PointNet Implementation (12 hours)
AC 2.1: Transform Networks
File: src/ThreeD/Models/PointNet/TransformNet.cs
AC 2.2: Shared MLP
File: src/ThreeD/Models/PointNet/SharedMLP.cs
AC 2.3: Complete PointNet
File: src/ThreeD/Models/PointNet/PointNetModel.cs
Tests: tests/ThreeD/Models/PointNet/PointNetTests.cs
Phase 3: MeshCNN Implementation (14 hours)
AC 3.1: Edge Features
File: src/ThreeD/Models/MeshCNN/EdgeFeatureExtractor.cs
AC 3.2: Mesh Convolutions
File: src/ThreeD/Models/MeshCNN/MeshConvBlock.cs
AC 3.3: Edge Pooling
File: src/ThreeD/Models/MeshCNN/EdgePooling.cs
AC 3.4: Complete MeshCNN
File: src/ThreeD/Models/MeshCNN/MeshCNNModel.cs
Tests: tests/ThreeD/Models/MeshCNN/MeshCNNTests.cs
Phase 4: NeRF Implementation (16 hours)
AC 4.1: Positional Encoding
File: src/ThreeD/Models/NeRF/PositionalEncoder.cs
AC 4.2: Volume Rendering
File: src/ThreeD/Models/NeRF/VolumeRenderer.cs
AC 4.3: Ray Casting
File: src/ThreeD/Models/NeRF/RayCaster.cs
AC 4.4: Complete NeRF
File: src/ThreeD/Models/NeRF/NeRFModel.cs
Tests: tests/ThreeD/Models/NeRF/NeRFTests.cs
Phase 5: Documentation (4 hours)
AC 5.1: XML Documentation
Complete API documentation.
AC 5.2: Usage Examples
Create examples for 3D classification, mesh processing, novel view synthesis.
Checklist Summary
Phase 1: Core Infrastructure (8 hours)
- [ ] Implement PointCloud, TriangleMesh, VoxelGrid
- [ ] Implement preprocessing utilities
- [ ] Write unit tests
- [ ] Test with real 3D data files
Phase 2: PointNet (12 hours)
- [ ] Implement TransformNet
- [ ] Implement SharedMLP
- [ ] Create PointNetModel
- [ ] Write integration tests
- [ ] Test on ModelNet40
Phase 3: MeshCNN (14 hours)
- [ ] Implement edge feature extraction
- [ ] Implement mesh convolutions
- [ ] Implement edge pooling
- [ ] Create MeshCNNModel
- [ ] Write integration tests
- [ ] Test on SHREC dataset
Phase 4: NeRF (16 hours)
- [ ] Implement positional encoding
- [ ] Implement volume rendering
- [ ] Implement ray casting
- [ ] Create NeRFModel
- [ ] Write integration tests
- [ ] Test novel view synthesis
Phase 5: Documentation (4 hours)
- [ ] Add XML documentation
- [ ] Create usage examples
- [ ] Write performance benchmarks
Total Estimated Time: 54 hours
Success Criteria
- PointNet: Achieves >85% accuracy on ModelNet40
- MeshCNN: Segments meshes accurately
- NeRF: Renders novel views with high quality
- Tests: 80%+ coverage
- Performance: Real-time or near real-time
- Documentation: Complete XML docs and examples
Common Pitfalls
Pitfall 1: Ignoring Permutation Invariance
Problem: Point order affects results. Solution: Use symmetric functions (max pooling).
Pitfall 2: Memory Issues with Large Meshes
Problem: Millions of vertices. Solution: Mesh simplification, edge pooling.
Pitfall 3: Slow NeRF Rendering
Problem: Querying network for every ray sample. Solution: Hierarchical sampling, caching.