[Phase 3] Implement Federated Learning Framework
Problem
COMPLETELY MISSING: Privacy-preserving distributed machine learning.
Missing Implementations
Core Algorithms (CRITICAL):
- FedAvg (Federated Averaging)
- FedProx (handles system heterogeneity)
- FedBN (Batch Normalization handling)
Privacy (HIGH):
- Differential Privacy integration
- Secure aggregation protocols
- Homomorphic encryption support
Personalization (MEDIUM):
- Personalized Federated Learning
- Meta-learning + Federated Learning
- Local model adaptation
Use Cases
- Privacy-preserving mobile AI
- Cross-silo learning (hospitals, banks)
- Edge device training
Architecture
- src/FederatedLearning/
- Interface: IFederatedTrainer, IAggregationStrategy
- Client-server simulation
- Real distributed deployment
Success Criteria
- LEAF benchmark datasets
- Privacy guarantees (epsilon-delta DP)
- Communication efficiency metrics
Issue #398: Junior Developer Implementation Guide
Video AI Models (TimeSformer, VideoMAE, CLIP)
Table of Contents
- Understanding the Problem
- Video Processing Fundamentals
- Architecture Overview
- Implementation Strategy
- Testing Strategy
- Step-by-Step Implementation Guide
Understanding the Problem
What Are We Building?
We're implementing support for video AI models that can:
- Video Classification: Recognize actions, scenes, events (TimeSformer, VideoMAE)
- Video-Text Alignment: Match videos with descriptions (CLIP for video)
- Temporal Reasoning: Understand motion, transitions, and sequences
- Video Retrieval: Search videos by text or similarity
- Action Detection: Identify what's happening and when
Why Video Models Are Special
Video adds complexity beyond images:
- Temporal dimension: Understanding motion and change over time
- Massive data: 30 FPS × 10 seconds = 300 frames to process
- Spatial-temporal patterns: Need to model both "what" and "when"
- Computational cost: Processing hundreds of frames is expensive
Real-World Use Cases
- Content moderation: Detect inappropriate content in videos
- Sports analysis: Recognize actions (goal, foul, tackle)
- Security: Detect anomalies, track people
- Video search: "Find clips of a cat jumping"
- Video understanding: Question answering about video content
- Autonomous driving: Understand dynamic scenes
Video Processing Fundamentals
Understanding Video Data
1. Video as Frame Sequence
/// <summary>
/// Video represented as a sequence of image frames.
/// Shape: [time_frames, channels, height, width]
/// </summary>
/// <remarks>
/// For Beginners:
/// A video is just a series of images (frames) shown quickly.
/// - Time: Which frame (0, 1, 2, ...)
/// - Channels: RGB (3 channels)
/// - Height, Width: Image dimensions
///
/// Example:
/// - 10-second video at 30 FPS = 300 frames
/// - Each frame: [3, 224, 224] (RGB, 224x224 pixels)
/// - Total shape: [300, 3, 224, 224]
///
/// Challenges:
/// - 300 frames is a lot of data to process
/// - Most models sample frames (e.g., take every 4th frame)
/// - Trade-off: more frames = better temporal understanding but slower
/// </remarks>
public class VideoTensor<T>
{
// Shape: [num_frames, channels, height, width]
// Example: [300, 3, 224, 224] for 10 seconds at 30 FPS
public Tensor<T> Frames { get; set; } = new Tensor<T>(new[] { 0, 3, 224, 224 });
public int NumFrames { get; set; } // Total frames
public int Channels { get; set; } // 3 for RGB, 1 for grayscale
public int Height { get; set; } // Frame height in pixels
public int Width { get; set; } // Frame width in pixels
public double FPS { get; set; } // Frames per second
public double DurationSeconds => NumFrames / FPS;
}
2. Frame Sampling Strategies
/// <summary>
/// Different strategies for sampling frames from video.
/// </summary>
/// <remarks>
/// For Beginners:
/// We can't process all 300 frames - too slow and memory-intensive.
/// Instead, we sample a subset:
///
/// 1. Uniform Sampling: Take every Nth frame
/// - Example: [0, 10, 20, 30, ...] (every 10th frame)
/// - Simple, but might miss important events
///
/// 2. Random Sampling: Pick frames randomly
/// - Good for training (data augmentation)
/// - Not deterministic (different each time)
///
/// 3. Dense Sampling: Take multiple clips
/// - Example: 3 clips of 16 frames each
/// - Better coverage, but more computation
///
/// 4. Adaptive Sampling: Sample more where motion happens
/// - Smart, but requires motion detection first
/// </remarks>
public enum FrameSamplingStrategy
{
Uniform, // Evenly spaced frames
Random, // Random frames
Dense, // Multiple dense clips
Center // Frames around center of video
}
public class VideoFrameSampler<T>
{
public Tensor<T> Sample(
VideoTensor<T> video,
int targetFrames,
FrameSamplingStrategy strategy)
{
Guard.NotNull(video, nameof(video));
Guard.Positive(targetFrames, nameof(targetFrames));
return strategy switch
{
FrameSamplingStrategy.Uniform => UniformSample(video, targetFrames),
FrameSamplingStrategy.Random => RandomSample(video, targetFrames),
FrameSamplingStrategy.Center => CenterSample(video, targetFrames),
FrameSamplingStrategy.Dense => DenseSample(video, targetFrames),
_ => throw new ArgumentException($"Unknown strategy: {strategy}")
};
}
private Tensor<T> UniformSample(VideoTensor<T> video, int targetFrames)
{
// Take evenly spaced frames
var sampled = new Tensor<T>(new[]
{
targetFrames,
video.Channels,
video.Height,
video.Width
});
for (int i = 0; i < targetFrames; i++)
{
// Map target frame index to source frame index
int sourceIdx = (int)((double)i * video.NumFrames / targetFrames);
sourceIdx = Math.Min(sourceIdx, video.NumFrames - 1);
// Copy frame
for (int c = 0; c < video.Channels; c++)
{
for (int h = 0; h < video.Height; h++)
{
for (int w = 0; w < video.Width; w++)
{
sampled[i, c, h, w] = video.Frames[sourceIdx, c, h, w];
}
}
}
}
return sampled;
}
private Tensor<T> RandomSample(VideoTensor<T> video, int targetFrames)
{
var random = new Random();
var indices = Enumerable.Range(0, video.NumFrames)
.OrderBy(x => random.Next())
.Take(targetFrames)
.OrderBy(x => x) // Sort to maintain temporal order
.ToArray();
var sampled = new Tensor<T>(new[]
{
targetFrames,
video.Channels,
video.Height,
video.Width
});
for (int i = 0; i < targetFrames; i++)
{
int sourceIdx = indices[i];
for (int c = 0; c < video.Channels; c++)
{
for (int h = 0; h < video.Height; h++)
{
for (int w = 0; w < video.Width; w++)
{
sampled[i, c, h, w] = video.Frames[sourceIdx, c, h, w];
}
}
}
}
return sampled;
}
private Tensor<T> CenterSample(VideoTensor<T> video, int targetFrames)
{
// Take frames centered around the middle of the video
int centerFrame = video.NumFrames / 2;
int startFrame = Math.Max(0, centerFrame - targetFrames / 2);
int endFrame = Math.Min(video.NumFrames, startFrame + targetFrames);
var sampled = new Tensor<T>(new[]
{
targetFrames,
video.Channels,
video.Height,
video.Width
});
for (int i = 0; i < targetFrames; i++)
{
int sourceIdx = startFrame + i;
if (sourceIdx >= video.NumFrames)
sourceIdx = video.NumFrames - 1;
for (int c = 0; c < video.Channels; c++)
{
for (int h = 0; h < video.Height; h++)
{
for (int w = 0; w < video.Width; w++)
{
sampled[i, c, h, w] = video.Frames[sourceIdx, c, h, w];
}
}
}
}
return sampled;
}
private Tensor<T> DenseSample(VideoTensor<T> video, int targetFrames)
{
// Sample multiple short clips densely
// This is a simplified version - real implementation would return multiple clips
return UniformSample(video, targetFrames);
}
}
3. Video Preprocessing Pipeline
/// <summary>
/// Standard preprocessing pipeline for video models.
/// </summary>
/// <remarks>
/// For Beginners:
/// Converting raw video to model input:
///
/// 1. Decode video → frames (raw pixels)
/// 2. Sample frames → reduce from 300 to 16-32 frames
/// 3. Resize frames → standardize to 224x224
/// 4. Normalize pixels → scale to [-1, 1] or [0, 1]
/// 5. Rearrange dimensions → match model input format
///
/// Common input formats:
/// - TimeSformer: [batch, frames, channels, height, width]
/// - I3D: [batch, channels, frames, height, width]
/// - VideoMAE: [batch, frames, channels, height, width]
/// </remarks>
public class VideoPreprocessor<T>
{
private readonly int _targetFrames;
private readonly int _targetHeight;
private readonly int _targetWidth;
private readonly FrameSamplingStrategy _samplingStrategy;
private readonly VideoFrameSampler<T> _sampler;
private readonly ImageNormalizer<T> _normalizer;
public VideoPreprocessor(
int targetFrames = 16,
int targetHeight = 224,
int targetWidth = 224,
FrameSamplingStrategy samplingStrategy = FrameSamplingStrategy.Uniform)
{
Guard.Positive(targetFrames, nameof(targetFrames));
Guard.Positive(targetHeight, nameof(targetHeight));
Guard.Positive(targetWidth, nameof(targetWidth));
_targetFrames = targetFrames;
_targetHeight = targetHeight;
_targetWidth = targetWidth;
_samplingStrategy = samplingStrategy;
_sampler = new VideoFrameSampler<T>();
_normalizer = new ImageNormalizer<T>(
mean: new[] { 0.485, 0.456, 0.406 }, // ImageNet mean
std: new[] { 0.229, 0.224, 0.225 }); // ImageNet std
}
public Tensor<T> Process(VideoTensor<T> video)
{
Guard.NotNull(video, nameof(video));
// Step 1: Sample frames
var sampled = _sampler.Sample(video, _targetFrames, _samplingStrategy);
// Step 2: Resize each frame
var resized = ResizeFrames(sampled, _targetHeight, _targetWidth);
// Step 3: Normalize pixels
var normalized = _normalizer.Normalize(resized);
return normalized;
}
private Tensor<T> ResizeFrames(Tensor<T> frames, int targetH, int targetW)
{
int numFrames = frames.Shape[0];
int channels = frames.Shape[1];
int srcH = frames.Shape[2];
int srcW = frames.Shape[3];
var resized = new Tensor<T>(new[] { numFrames, channels, targetH, targetW });
// Resize each frame using bilinear interpolation
for (int f = 0; f < numFrames; f++)
{
for (int c = 0; c < channels; c++)
{
for (int h = 0; h < targetH; h++)
{
for (int w = 0; w < targetW; w++)
{
// Map target pixel to source pixel
double srcY = h * (double)srcH / targetH;
double srcX = w * (double)srcW / targetW;
// Bilinear interpolation
int y0 = (int)srcY;
int y1 = Math.Min(y0 + 1, srcH - 1);
int x0 = (int)srcX;
int x1 = Math.Min(x0 + 1, srcW - 1);
double fy = srcY - y0;
double fx = srcX - x0;
dynamic v00 = frames[f, c, y0, x0];
dynamic v01 = frames[f, c, y0, x1];
dynamic v10 = frames[f, c, y1, x0];
dynamic v11 = frames[f, c, y1, x1];
dynamic interpolated =
v00 * (1 - fx) * (1 - fy) +
v01 * fx * (1 - fy) +
v10 * (1 - fx) * fy +
v11 * fx * fy;
resized[f, c, h, w] = (T)(object)interpolated;
}
}
}
}
return resized;
}
}
Architecture Overview
Model Taxonomy
Video AI Models
├── Frame-based (Process frames independently, then aggregate)
│ ├── Two-Stream Networks (RGB + Optical Flow)
│ ├── C3D (3D Convolutions)
│ └── I3D (Inflated 3D ConvNets)
│
├── Transformer-based (Attention across space and time)
│ ├── TimeSformer (Divided space-time attention)
│ ├── VideoMAE (Masked autoencoder for video)
│ ├── ViViT (Video Vision Transformer)
│ └── MViT (Multiscale Vision Transformers)
│
└── Video-Text Models (Joint video-text understanding)
├── CLIP for Video (Contrastive learning)
├── VideoCLIP (Temporal extensions)
└── VIOLET (Video-Language Transformer)
TimeSformer Architecture
/// <summary>
/// TimeSformer: Space-time attention model for video understanding.
/// Uses divided attention (separate spatial and temporal attention).
/// </summary>
/// <remarks>
/// For Beginners:
/// TimeSformer processes video in three stages:
///
/// 1. Patch Embedding:
/// - Split each frame into patches (like ViT)
/// - Each patch becomes a token
/// - Add positional and temporal encodings
///
/// 2. Divided Attention:
/// - Spatial attention: Attend to patches in same frame
/// - Temporal attention: Attend to same patch across frames
/// - More efficient than full space-time attention
///
/// 3. Classification:
/// - Global average pooling over time and space
/// - Linear classifier for action labels
///
/// Input: [batch, frames, channels, height, width]
/// Example: [1, 16, 3, 224, 224]
/// → Patch embedding → [batch, frames, num_patches, hidden_dim]
/// → Attention blocks → [batch, frames, num_patches, hidden_dim]
/// → Pooling → [batch, hidden_dim]
/// → Classifier → [batch, num_classes]
/// </remarks>
public class TimeSformerModel<T> : IVideoModel<T>
{
private readonly TimeSformerConfig _config;
private readonly PatchEmbedding<T> _patchEmbed;
private readonly PositionalEncoding<T> _posEncoding;
private readonly TemporalEncoding<T> _temporalEncoding;
private readonly List<DividedAttentionBlock<T>> _blocks;
private readonly LayerNorm<T> _norm;
private readonly LinearLayer<T> _classifier;
public TimeSformerModel(TimeSformerConfig config)
{
Guard.NotNull(config, nameof(config));
_config = config;
// Patch embedding: [frames, 3, 224, 224] → [frames, num_patches, hidden_dim]
_patchEmbed = new PatchEmbedding<T>(
imageSize: config.ImageSize,
patchSize: config.PatchSize,
inChannels: 3,
embedDim: config.HiddenSize);
int numPatches = (config.ImageSize / config.PatchSize) *
(config.ImageSize / config.PatchSize);
_posEncoding = new PositionalEncoding<T>(
maxLen: numPatches + 1, // +1 for CLS token
hiddenSize: config.HiddenSize);
_temporalEncoding = new TemporalEncoding<T>(
maxFrames: config.NumFrames,
hiddenSize: config.HiddenSize);
// Divided attention blocks
_blocks = new List<DividedAttentionBlock<T>>();
for (int i = 0; i < config.NumLayers; i++)
{
_blocks.Add(new DividedAttentionBlock<T>(
hiddenSize: config.HiddenSize,
numHeads: config.NumAttentionHeads,
mlpDim: config.IntermediateSize,
dropoutRate: config.DropoutRate));
}
_norm = new LayerNorm<T>(config.HiddenSize);
_classifier = new LinearLayer<T>(
inputSize: config.HiddenSize,
outputSize: config.NumClasses);
}
public VideoModelOutput<T> Forward(Tensor<T> video)
{
Guard.NotNull(video, nameof(video));
// video: [batch, frames, channels, height, width]
int batch = video.Shape[0];
int frames = video.Shape[1];
// Step 1: Embed each frame independently
// Process each frame: [batch*frames, channels, height, width]
var flattenedVideo = ReshapeForPatching(video);
// Patch embedding: [batch*frames, num_patches, hidden_dim]
var patches = _patchEmbed.Forward(flattenedVideo);
// Add CLS token to each frame
var withCls = AddClassToken(patches, batch, frames);
// withCls: [batch, frames, num_patches+1, hidden_dim]
// Step 2: Add positional and temporal encodings
var encoded = AddEncodings(withCls);
// Step 3: Apply divided attention blocks
var x = encoded;
foreach (var block in _blocks)
{
x = block.Forward(x, numFrames: frames);
}
// Step 4: Layer norm
x = _norm.Forward(x);
// Step 5: Extract CLS tokens and average over time
// x: [batch, frames, num_patches+1, hidden_dim]
// Take CLS token (index 0) from each frame
var clsTokens = ExtractClassTokens(x, batch, frames);
// Average over time: [batch, frames, hidden_dim] → [batch, hidden_dim]
var pooled = TemporalPooling(clsTokens);
// Step 6: Classification
var logits = _classifier.Forward(pooled);
return new VideoModelOutput<T>
{
Logits = logits,
HiddenStates = x,
Pooled = pooled
};
}
private Tensor<T> ReshapeForPatching(Tensor<T> video)
{
// [batch, frames, channels, height, width]
// → [batch*frames, channels, height, width]
int batch = video.Shape[0];
int frames = video.Shape[1];
int channels = video.Shape[2];
int height = video.Shape[3];
int width = video.Shape[4];
var reshaped = new Tensor<T>(new[]
{
batch * frames,
channels,
height,
width
});
for (int b = 0; b < batch; b++)
{
for (int f = 0; f < frames; f++)
{
int idx = b * frames + f;
for (int c = 0; c < channels; c++)
{
for (int h = 0; h < height; h++)
{
for (int w = 0; w < width; w++)
{
reshaped[idx, c, h, w] = video[b, f, c, h, w];
}
}
}
}
}
return reshaped;
}
private Tensor<T> AddClassToken(Tensor<T> patches, int batch, int frames)
{
// patches: [batch*frames, num_patches, hidden_dim]
// Add CLS token as first token
int numPatches = patches.Shape[1];
int hiddenDim = patches.Shape[2];
var withCls = new Tensor<T>(new[]
{
batch * frames,
numPatches + 1,
hiddenDim
});
// Initialize CLS tokens (learnable parameter in production)
for (int i = 0; i < batch * frames; i++)
{
for (int d = 0; d < hiddenDim; d++)
{
withCls[i, 0, d] = (T)(object)0.0; // CLS token
}
for (int p = 0; p < numPatches; p++)
{
for (int d = 0; d < hiddenDim; d++)
{
withCls[i, p + 1, d] = patches[i, p, d];
}
}
}
return withCls;
}
private Tensor<T> AddEncodings(Tensor<T> tokens)
{
// Add positional encoding (spatial) and temporal encoding
var withPos = _posEncoding.Forward(tokens);
var withTemporal = _temporalEncoding.Forward(withPos);
return withTemporal;
}
private Tensor<T> ExtractClassTokens(Tensor<T> x, int batch, int frames)
{
// x: [batch*frames, num_patches+1, hidden_dim]
// Extract CLS tokens: [batch, frames, hidden_dim]
int hiddenDim = x.Shape[2];
var clsTokens = new Tensor<T>(new[] { batch, frames, hiddenDim });
for (int b = 0; b < batch; b++)
{
for (int f = 0; f < frames; f++)
{
int idx = b * frames + f;
for (int d = 0; d < hiddenDim; d++)
{
clsTokens[b, f, d] = x[idx, 0, d]; // CLS is at index 0
}
}
}
return clsTokens;
}
private Tensor<T> TemporalPooling(Tensor<T> clsTokens)
{
// clsTokens: [batch, frames, hidden_dim]
// Average over time: [batch, hidden_dim]
int batch = clsTokens.Shape[0];
int frames = clsTokens.Shape[1];
int hiddenDim = clsTokens.Shape[2];
var pooled = new Tensor<T>(new[] { batch, hiddenDim });
for (int b = 0; b < batch; b++)
{
for (int d = 0; d < hiddenDim; d++)
{
dynamic sum = (T)(object)0.0;
for (int f = 0; f < frames; f++)
{
sum += clsTokens[b, f, d];
}
pooled[b, d] = (T)(object)(sum / frames);
}
}
return pooled;
}
}
public class TimeSformerConfig
{
public int ImageSize { get; set; } = 224;
public int PatchSize { get; set; } = 16;
public int NumFrames { get; set; } = 16;
public int HiddenSize { get; set; } = 768;
public int NumLayers { get; set; } = 12;
public int NumAttentionHeads { get; set; } = 12;
public int IntermediateSize { get; set; } = 3072;
public int NumClasses { get; set; } = 400; // Kinetics-400
public double DropoutRate { get; set; } = 0.1;
}
Divided Attention Block
/// <summary>
/// Divided attention: separate temporal and spatial attention.
/// More efficient than joint space-time attention.
/// </summary>
/// <remarks>
/// For Beginners:
/// Instead of attending to all patches in all frames (expensive),
/// we divide attention into two steps:
///
/// 1. Temporal Attention:
/// - For each spatial position, attend across time
/// - "What is this patch doing over time?"
/// - Example: Same location in frame 1, 2, 3, ...
///
/// 2. Spatial Attention:
/// - Within each frame, attend to other patches
/// - "What objects are in this frame?"
/// - Example: All patches in frame 5
///
/// Benefits:
/// - Reduces complexity from O(T²P²) to O(TP² + T²P)
/// - T = num frames, P = num patches
/// - Still captures space-time relationships
/// </remarks>
public class DividedAttentionBlock<T>
{
private readonly MultiHeadAttention<T> _temporalAttention;
private readonly MultiHeadAttention<T> _spatialAttention;
private readonly LayerNorm<T> _norm1;
private readonly LayerNorm<T> _norm2;
private readonly LayerNorm<T> _norm3;
private readonly FeedForwardNetwork<T> _ffn;
public DividedAttentionBlock(
int hiddenSize,
int numHeads,
int mlpDim,
double dropoutRate)
{
Guard.Positive(hiddenSize, nameof(hiddenSize));
Guard.Positive(numHeads, nameof(numHeads));
_temporalAttention = new MultiHeadAttention<T>(
hiddenSize: hiddenSize,
numHeads: numHeads,
dropoutRate: dropoutRate);
_spatialAttention = new MultiHeadAttention<T>(
hiddenSize: hiddenSize,
numHeads: numHeads,
dropoutRate: dropoutRate);
_norm1 = new LayerNorm<T>(hiddenSize);
_norm2 = new LayerNorm<T>(hiddenSize);
_norm3 = new LayerNorm<T>(hiddenSize);
_ffn = new FeedForwardNetwork<T>(
inputSize: hiddenSize,
hiddenSize: mlpDim,
outputSize: hiddenSize,
dropoutRate: dropoutRate);
}
public Tensor<T> Forward(Tensor<T> x, int numFrames)
{
Guard.NotNull(x, nameof(x));
// x: [batch*frames, num_patches+1, hidden_dim]
// Step 1: Temporal attention (attend across frames)
var temporalOut = TemporalAttention(x, numFrames);
x = x + temporalOut; // Residual connection
x = _norm1.Forward(x);
// Step 2: Spatial attention (attend within frames)
var spatialOut = _spatialAttention.Forward(x, x, x);
x = x + spatialOut; // Residual connection
x = _norm2.Forward(x);
// Step 3: Feed-forward network
var ffnOut = _ffn.Forward(x);
x = x + ffnOut; // Residual connection
x = _norm3.Forward(x);
return x;
}
private Tensor<T> TemporalAttention(Tensor<T> x, int numFrames)
{
// x: [batch*frames, num_patches+1, hidden_dim]
// Rearrange to [batch*num_patches, frames, hidden_dim]
int batchFrames = x.Shape[0];
int batch = batchFrames / numFrames;
int numPatches = x.Shape[1];
int hiddenDim = x.Shape[2];
// Rearrange for temporal attention
var rearranged = new Tensor<T>(new[]
{
batch * numPatches,
numFrames,
hiddenDim
});
for (int b = 0; b < batch; b++)
{
for (int p = 0; p < numPatches; p++)
{
for (int f = 0; f < numFrames; f++)
{
int srcIdx = b * numFrames + f;
int dstIdx = b * numPatches + p;
for (int d = 0; d < hiddenDim; d++)
{
rearranged[dstIdx, f, d] = x[srcIdx, p, d];
}
}
}
}
// Apply temporal attention
var attended = _temporalAttention.Forward(
rearranged,
rearranged,
rearranged);
// Rearrange back to [batch*frames, num_patches, hidden_dim]
var output = new Tensor<T>(x.Shape);
for (int b = 0; b < batch; b++)
{
for (int p = 0; p < numPatches; p++)
{
for (int f = 0; f < numFrames; f++)
{
int srcIdx = b * numPatches + p;
int dstIdx = b * numFrames + f;
for (int d = 0; d < hiddenDim; d++)
{
output[dstIdx, p, d] = attended[srcIdx, f, d];
}
}
}
}
return output;
}
}
VideoMAE Architecture
/// <summary>
/// VideoMAE: Masked Autoencoder for video self-supervised learning.
/// Masks patches in space and time, learns to reconstruct them.
/// </summary>
/// <remarks>
/// For Beginners:
/// VideoMAE learns video representations by:
///
/// 1. Masking: Hide 90% of patches (very high masking ratio)
/// 2. Encoding: Process visible patches with transformer
/// 3. Decoding: Predict masked patches from visible ones
/// 4. Reconstruction: Match original video
///
/// Why it works:
/// - Forces model to understand temporal relationships
/// - Can't just copy neighbors (too many masked)
/// - Learns motion, object permanence, physics
///
/// After pretraining, use encoder for downstream tasks:
/// - Action recognition
/// - Video retrieval
/// - Anomaly detection
/// </remarks>
public class VideoMAEModel<T> : IVideoModel<T>
{
private readonly VideoMAEConfig _config;
private readonly PatchEmbedding<T> _patchEmbed;
private readonly PositionalEncoding<T> _posEncoding;
private readonly TransformerEncoder<T> _encoder;
private readonly TransformerDecoder<T> _decoder;
private readonly LinearLayer<T> _reconstructionHead;
public VideoMAEModel(VideoMAEConfig config)
{
Guard.NotNull(config, nameof(config));
_config = config;
_patchEmbed = new PatchEmbedding<T>(
imageSize: config.ImageSize,
patchSize: config.PatchSize,
inChannels: 3,
embedDim: config.HiddenSize);
int totalPatches = config.NumFrames *
(config.ImageSize / config.PatchSize) *
(config.ImageSize / config.PatchSize);
_posEncoding = new PositionalEncoding<T>(
maxLen: totalPatches,
hiddenSize: config.HiddenSize);
_encoder = new TransformerEncoder<T>(
numLayers: config.EncoderLayers,
hiddenSize: config.HiddenSize,
numHeads: config.NumAttentionHeads,
intermediateSize: config.IntermediateSize,
dropoutRate: config.DropoutRate);
_decoder = new TransformerDecoder<T>(
numLayers: config.DecoderLayers,
hiddenSize: config.DecoderHiddenSize,
numHeads: config.DecoderNumHeads,
intermediateSize: config.DecoderIntermediateSize,
dropoutRate: config.DropoutRate);
int patchDim = 3 * config.PatchSize * config.PatchSize;
_reconstructionHead = new LinearLayer<T>(
inputSize: config.DecoderHiddenSize,
outputSize: patchDim);
}
public VideoMAEOutput<T> Forward(
Tensor<T> video,
double maskRatio = 0.9,
bool returnReconstruction = true)
{
Guard.NotNull(video, nameof(video));
// video: [batch, frames, channels, height, width]
// Step 1: Patchify video
var patches = PatchifyVideo(video);
// patches: [batch, num_patches, patch_dim]
// Step 2: Random masking
var (visiblePatches, maskIndices) = RandomMask(patches, maskRatio);
// Step 3: Add positional encoding to visible patches
var encoded = _posEncoding.Forward(visiblePatches);
// Step 4: Encode visible patches
var encoderOutput = _encoder.Forward(encoded);
if (!returnReconstruction)
{
return new VideoMAEOutput<T>
{
EncoderOutput = encoderOutput,
MaskIndices = maskIndices
};
}
// Step 5: Decode to reconstruct all patches
var decoderInput = InsertMaskTokens(
encoderOutput,
maskIndices,
patches.Shape[1]);
var decoderOutput = _decoder.Forward(decoderInput);
// Step 6: Predict pixel values
var reconstruction = _reconstructionHead.Forward(decoderOutput);
// Step 7: Compute reconstruction loss (only on masked patches)
var loss = ComputeReconstructionLoss(
reconstruction,
patches,
maskIndices);
return new VideoMAEOutput<T>
{
EncoderOutput = encoderOutput,
Reconstruction = reconstruction,
Loss = loss,
MaskIndices = maskIndices
};
}
private Tensor<T> PatchifyVideo(Tensor<T> video)
{
// Convert video to sequence of patches
// [batch, frames, channels, height, width]
// → [batch, frames*num_patches_per_frame, patch_dim]
int batch = video.Shape[0];
int frames = video.Shape[1];
int patchSize = _config.PatchSize;
int patchesPerSide = _config.ImageSize / patchSize;
int patchesPerFrame = patchesPerSide * patchesPerSide;
int totalPatches = frames * patchesPerFrame;
int patchDim = 3 * patchSize * patchSize;
var patches = new Tensor<T>(new[] { batch, totalPatches, patchDim });
for (int b = 0; b < batch; b++)
{
int patchIdx = 0;
for (int f = 0; f < frames; f++)
{
for (int py = 0; py < patchesPerSide; py++)
{
for (int px = 0; px < patchesPerSide; px++)
{
int dim = 0;
for (int c = 0; c < 3; c++)
{
for (int h = 0; h < patchSize; h++)
{
for (int w = 0; w < patchSize; w++)
{
int y = py * patchSize + h;
int x = px * patchSize + w;
patches[b, patchIdx, dim++] =
video[b, f, c, y, x];
}
}
}
patchIdx++;
}
}
}
}
return patches;
}
private (Tensor<T> visible, int[] maskIndices) RandomMask(
Tensor<T> patches,
double maskRatio)
{
int batch = patches.Shape[0];
int numPatches = patches.Shape[1];
int patchDim = patches.Shape[2];
int numMasked = (int)(numPatches * maskRatio);
int numVisible = numPatches - numMasked;
// Random shuffle indices
var random = new Random();
var indices = Enumerable.Range(0, numPatches)
.OrderBy(x => random.Next())
.ToArray();
var visibleIndices = indices.Take(numVisible).ToArray();
var maskIndices = indices.Skip(numVisible).ToArray();
// Extract visible patches
var visible = new Tensor<T>(new[] { batch, numVisible, patchDim });
for (int b = 0; b < batch; b++)
{
for (int i = 0; i < numVisible; i++)
{
int srcIdx = visibleIndices[i];
for (int d = 0; d < patchDim; d++)
{
visible[b, i, d] = patches[b, srcIdx, d];
}
}
}
return (visible, maskIndices);
}
private Tensor<T> InsertMaskTokens(
Tensor<T> encoded,
int[] maskIndices,
int totalPatches)
{
// Insert learnable mask tokens at masked positions
// This is simplified - real implementation uses learnable parameters
int batch = encoded.Shape[0];
int hiddenDim = encoded.Shape[2];
var full = new Tensor<T>(new[] { batch, totalPatches, hiddenDim });
// Fill with mask tokens (zero for simplicity)
// In production, these would be learnable parameters
return full;
}
private Tensor<T> ComputeReconstructionLoss(
Tensor<T> reconstruction,
Tensor<T> original,
int[] maskIndices)
{
// MSE loss on masked patches only
// This is a placeholder - real implementation needed
return new Tensor<T>(new[] { 1 });
}
}
public class VideoMAEConfig
{
public int ImageSize { get; set; } = 224;
public int PatchSize { get; set; } = 16;
public int NumFrames { get; set; } = 16;
public int HiddenSize { get; set; } = 768;
public int EncoderLayers { get; set; } = 12;
public int DecoderLayers { get; set; } = 4;
public int NumAttentionHeads { get; set; } = 12;
public int DecoderNumHeads { get; set; } = 8;
public int IntermediateSize { get; set; } = 3072;
public int DecoderHiddenSize { get; set; } = 384;
public int DecoderIntermediateSize { get; set; } = 1536;
public double DropoutRate { get; set; } = 0.1;
}
CLIP for Video
/// <summary>
/// CLIP adapted for video: learns joint video-text embeddings.
/// Enables zero-shot video classification and video-text retrieval.
/// </summary>
/// <remarks>
/// For Beginners:
/// CLIP for video learns to match videos with text descriptions:
///
/// 1. Video Encoder:
/// - Encodes video → vector representation
/// - Uses TimeSformer or similar architecture
///
/// 2. Text Encoder:
/// - Encodes text description → vector representation
/// - Uses transformer (BERT-like)
///
/// 3. Contrastive Learning:
/// - Match video embeddings with correct text embeddings
/// - Push away incorrect matches
///
/// Applications:
/// - Zero-shot classification: "Does this video show 'person dancing'?"
/// - Video search: Find videos matching "cat playing piano"
/// - Video captioning: Generate descriptions
/// </remarks>
public class VideoCLIPModel<T> : IVideoTextModel<T>
{
private readonly VideoCLIPConfig _config;
private readonly TimeSformerModel<T> _videoEncoder;
private readonly TextTransformer<T> _textEncoder;
private readonly LinearLayer<T> _videoProjection;
private readonly LinearLayer<T> _textProjection;
public VideoCLIPModel(VideoCLIPConfig config)
{
Guard.NotNull(config, nameof(config));
_config = config;
// Video encoder (TimeSformer or similar)
_videoEncoder = new TimeSformerModel<T>(
new TimeSformerConfig
{
NumFrames = config.NumFrames,
HiddenSize = config.VideoHiddenSize,
NumLayers = config.VideoNumLayers,
NumClasses = config.EmbedDim // Project to shared embedding space
});
// Text encoder (BERT-like)
_textEncoder = new TextTransformer<T>(
vocabSize: config.TextVocabSize,
hiddenSize: config.TextHiddenSize,
numLayers: config.TextNumLayers,
numHeads: config.TextNumHeads);
// Projection layers to shared embedding space
_videoProjection = new LinearLayer<T>(
inputSize: config.VideoHiddenSize,
outputSize: config.EmbedDim);
_textProjection = new LinearLayer<T>(
inputSize: config.TextHiddenSize,
outputSize: config.EmbedDim);
}
public VideoCLIPOutput<T> Forward(
Tensor<T> video,
Tensor<T> textTokens)
{
Guard.NotNull(video, nameof(video));
Guard.NotNull(textTokens, nameof(textTokens));
// Step 1: Encode video
var videoOutput = _videoEncoder.Forward(video);
var videoFeatures = videoOutput.Pooled;
// Step 2: Encode text
var textOutput = _textEncoder.Forward(textTokens);
var textFeatures = textOutput.Pooled;
// Step 3: Project to shared embedding space
var videoEmbeddings = _videoProjection.Forward(videoFeatures);
var textEmbeddings = _textProjection.Forward(textFeatures);
// Step 4: Normalize embeddings
videoEmbeddings = L2Normalize(videoEmbeddings);
textEmbeddings = L2Normalize(textEmbeddings);
// Step 5: Compute similarity matrix
var similarity = ComputeSimilarity(videoEmbeddings, textEmbeddings);
return new VideoCLIPOutput<T>
{
VideoEmbeddings = videoEmbeddings,
TextEmbeddings = textEmbeddings,
Similarity = similarity
};
}
public Tensor<T> EncodeVideo(Tensor<T> video)
{
var output = _videoEncoder.Forward(video);
var projected = _videoProjection.Forward(output.Pooled);
return L2Normalize(projected);
}
public Tensor<T> EncodeText(Tensor<T> textTokens)
{
var output = _textEncoder.Forward(textTokens);
var projected = _textProjection.Forward(output.Pooled);
return L2Normalize(projected);
}
private Tensor<T> L2Normalize(Tensor<T> embeddings)
{
// Normalize each embedding to unit length
int batch = embeddings.Shape[0];
int dim = embeddings.Shape[1];
var normalized = new Tensor<T>(embeddings.Shape);
for (int b = 0; b < batch; b++)
{
// Compute L2 norm
double norm = 0;
for (int d = 0; d < dim; d++)
{
double val = Convert.ToDouble(embeddings[b, d]);
norm += val * val;
}
norm = Math.Sqrt(norm);
if (norm < 1e-10)
norm = 1.0;
// Normalize
for (int d = 0; d < dim; d++)
{
normalized[b, d] = (T)(object)(
Convert.ToDouble(embeddings[b, d]) / norm);
}
}
return normalized;
}
private Tensor<T> ComputeSimilarity(
Tensor<T> videoEmbeddings,
Tensor<T> textEmbeddings)
{
// Cosine similarity: video_embed · text_embed
// Since embeddings are L2-normalized, this is just dot product
int numVideos = videoEmbeddings.Shape[0];
int numTexts = textEmbeddings.Shape[0];
int dim = videoEmbeddings.Shape[1];
var similarity = new Tensor<T>(new[] { numVideos, numTexts });
for (int v = 0; v < numVideos; v++)
{
for (int t = 0; t < numTexts; t++)
{
double sim = 0;
for (int d = 0; d < dim; d++)
{
sim += Convert.ToDouble(videoEmbeddings[v, d]) *
Convert.ToDouble(textEmbeddings[t, d]);
}
similarity[v, t] = (T)(object)sim;
}
}
return similarity;
}
}
public class VideoCLIPConfig
{
public int NumFrames { get; set; } = 16;
public int VideoHiddenSize { get; set; } = 768;
public int VideoNumLayers { get; set; } = 12;
public int TextVocabSize { get; set; } = 49408;
public int TextHiddenSize { get; set; } = 512;
public int TextNumLayers { get; set; } = 12;
public int TextNumHeads { get; set; } = 8;
public int EmbedDim { get; set; } = 512; // Shared embedding space
}
Implementation Strategy
Project Structure
src/
├── Video/
│ ├── IVideoModel.cs
│ ├── VideoTensor.cs
│ ├── VideoFrameSampler.cs
│ └── Preprocessing/
│ ├── VideoPreprocessor.cs
│ ├── FrameExtractor.cs
│ ├── VideoNormalizer.cs
│ └── VideoAugmentation.cs
│
├── Video/Models/
│ ├── TimeSformer/
│ │ ├── TimeSformerModel.cs
│ │ ├── TimeSformerConfig.cs
│ │ ├── DividedAttentionBlock.cs
│ │ ├── TemporalEncoding.cs
│ │ └── TimeSformerProcessor.cs
│ │
│ ├── VideoMAE/
│ │ ├── VideoMAEModel.cs
│ │ ├── VideoMAEConfig.cs
│ │ ├── VideoMAEPretraining.cs
│ │ └── VideoMAEProcessor.cs
│ │
│ └── VideoCLIP/
│ ├── VideoCLIPModel.cs
│ ├── VideoCLIPConfig.cs
│ ├── VideoEncoder.cs
│ ├── TextEncoder.cs
│ └── ContrastiveLearning.cs
│
└── Video/Utils/
├── VideoIO.cs (Load/save videos)
├── OpticalFlow.cs (Motion estimation)
└── TemporalAugmentation.cs
Testing Strategy
Unit Tests
namespace AiDotNetTests.Video;
public class VideoPreprocessorTests
{
[Fact]
public void Process_ValidVideo_ReturnsProcessedFrames()
{
// Arrange
var preprocessor = new VideoPreprocessor<double>(
targetFrames: 16,
targetHeight: 224,
targetWidth: 224);
var video = CreateTestVideo(
numFrames: 300,
height: 480,
width: 640);
// Act
var processed = preprocessor.Process(video);
// Assert
Assert.NotNull(processed);
Assert.Equal(16, processed.Shape[0]); // 16 frames
Assert.Equal(3, processed.Shape[1]); // RGB
Assert.Equal(224, processed.Shape[2]); // Height
Assert.Equal(224, processed.Shape[3]); // Width
}
[Theory]
[InlineData(FrameSamplingStrategy.Uniform)]
[InlineData(FrameSamplingStrategy.Random)]
[InlineData(FrameSamplingStrategy.Center)]
public void FrameSampler_DifferentStrategies_ReturnsCorrectCount(
FrameSamplingStrategy strategy)
{
// Arrange
var sampler = new VideoFrameSampler<double>();
var video = CreateTestVideo(100, 224, 224);
// Act
var sampled = sampler.Sample(video, targetFrames: 16, strategy);
// Assert
Assert.Equal(16, sampled.Shape[0]);
}
private VideoTensor<double> CreateTestVideo(
int numFrames,
int height,
int width)
{
var frames = new Tensor<double>(new[]
{
numFrames,
3, // RGB
height,
width
});
// Fill with test pattern
for (int f = 0; f < numFrames; f++)
{
for (int c = 0; c < 3; c++)
{
for (int h = 0; h < height; h++)
{
for (int w = 0; w < width; w++)
{
frames[f, c, h, w] = (f + c) / 255.0;
}
}
}
}
return new VideoTensor<double>
{
Frames = frames,
NumFrames = numFrames,
Channels = 3,
Height = height,
Width = width,
FPS = 30.0
};
}
}
Integration Tests
public class TimeSformerIntegrationTests
{
[Fact]
public void TimeSformer_ProcessVideo_ReturnsLogits()
{
// Arrange
var config = new TimeSformerConfig
{
NumFrames = 16,
ImageSize = 224,
NumClasses = 400
};
var model = new TimeSformerModel<double>(config);
var video = CreateTestVideo(
numFrames: 16,
height: 224,
width: 224);
// Add batch dimension
var batch = video.Frames.Unsqueeze(0);
// Act
var output = model.Forward(batch);
// Assert
Assert.NotNull(output.Logits);
Assert.Equal(2, output.Logits.Rank); // [batch, num_classes]
Assert.Equal(1, output.Logits.Shape[0]); // Batch size
Assert.Equal(400, output.Logits.Shape[1]); // Kinetics-400
}
[Fact]
public void VideoCLIP_VideoTextMatch_HighSimilarity()
{
// Arrange
var config = new VideoCLIPConfig();
var model = new VideoCLIPModel<double>(config);
var video = CreateTestVideo(16, 224, 224);
var videoBatch = video.Frames.Unsqueeze(0);
var textTokens = CreateTestTextTokens("person dancing");
var textBatch = textTokens.Unsqueeze(0);
// Act
var output = model.Forward(videoBatch, textBatch);
// Assert
Assert.NotNull(output.Similarity);
Assert.Equal(2, output.Similarity.Rank); // [num_videos, num_texts]
// Similarity should be between -1 and 1 (cosine similarity)
double sim = Convert.ToDouble(output.Similarity[0, 0]);
Assert.InRange(sim, -1.0, 1.0);
}
private Tensor<long> CreateTestTextTokens(string text)
{
// Simplified tokenization
var tokens = new Tensor<long>(new[] { 10 }); // Max 10 tokens
for (int i = 0; i < 10; i++)
{
tokens[i] = i + 1; // Dummy tokens
}
return tokens;
}
}
Step-by-Step Implementation Guide
Phase 1: Core Video Infrastructure (6 hours)
AC 1.1: Video Data Structures
File: src/Video/VideoTensor.cs
Implement VideoTensor class with metadata.
AC 1.2: Frame Sampling
File: src/Video/VideoFrameSampler.cs
Implement all sampling strategies.
AC 1.3: Video Preprocessing
File: src/Video/Preprocessing/VideoPreprocessor.cs
Implement complete preprocessing pipeline.
Tests: tests/Video/VideoPreprocessorTests.cs
Phase 2: TimeSformer Implementation (10 hours)
AC 2.1: Divided Attention Block
File: src/Video/Models/TimeSformer/DividedAttentionBlock.cs
Implement temporal and spatial attention.
AC 2.2: Temporal Encoding
File: src/Video/Models/TimeSformer/TemporalEncoding.cs
Add time-aware positional encodings.
AC 2.3: Complete TimeSformer
File: src/Video/Models/TimeSformer/TimeSformerModel.cs
Integrate all components.
Tests: tests/Video/Models/TimeSformer/TimeSformerTests.cs
Phase 3: VideoMAE Implementation (12 hours)
AC 3.1: Patch Masking
Implement random masking with high ratio (90%).
AC 3.2: Encoder-Decoder
Implement MAE architecture with reconstruction.
AC 3.3: Pretraining Loop
Create self-supervised pretraining pipeline.
Tests: tests/Video/Models/VideoMAE/VideoMAETests.cs
Phase 4: VideoCLIP Implementation (14 hours)
AC 4.1: Video Encoder
Adapt TimeSformer for CLIP.
AC 4.2: Text Encoder
Implement transformer text encoder.
AC 4.3: Contrastive Learning
Implement contrastive loss and training.
Tests: tests/Video/Models/VideoCLIP/VideoCLIPTests.cs
Phase 5: Documentation and Examples (4 hours)
AC 5.1: XML Documentation
Complete API documentation.
AC 5.2: Usage Examples
Create examples for action recognition, video search.
Checklist Summary
Phase 1: Core Infrastructure (6 hours)
- [ ] Implement VideoTensor and metadata
- [ ] Implement frame sampling strategies
- [ ] Implement video preprocessing pipeline
- [ ] Write unit tests for preprocessing
- [ ] Test with real video files
Phase 2: TimeSformer (10 hours)
- [ ] Implement divided attention block
- [ ] Implement temporal encoding
- [ ] Create TimeSformerModel
- [ ] Write integration tests
- [ ] Test on Kinetics-400 dataset
Phase 3: VideoMAE (12 hours)
- [ ] Implement patch masking
- [ ] Implement encoder-decoder
- [ ] Create pretraining pipeline
- [ ] Write integration tests
- [ ] Test reconstruction quality
Phase 4: VideoCLIP (14 hours)
- [ ] Adapt TimeSformer as video encoder
- [ ] Implement text encoder
- [ ] Implement contrastive learning
- [ ] Write integration tests
- [ ] Test zero-shot classification
Phase 5: Documentation (4 hours)
- [ ] Add XML documentation
- [ ] Create usage examples
- [ ] Write performance benchmarks
Total Estimated Time: 46 hours
Success Criteria
- Preprocessing: Videos correctly sampled and normalized
- TimeSformer: Achieves >70% top-1 accuracy on Kinetics-400
- VideoMAE: Learns meaningful representations via reconstruction
- VideoCLIP: Enables zero-shot video classification
- Tests: 80%+ coverage, all integration tests pass
- Performance: Can process videos in reasonable time
- Documentation: Complete XML docs and examples
Common Pitfalls
Pitfall 1: Memory Overflow
Problem: Loading all 300 frames into memory. Solution: Sample frames first, don't load entire video.
Pitfall 2: Incorrect Dimension Order
Problem: [B, C, T, H, W] vs [B, T, C, H, W]. Solution: Document expected format clearly.
Pitfall 3: Forgetting Temporal Context
Problem: Treating video as independent frames. Solution: Use temporal attention or 3D convolutions.
Pitfall 4: Slow Inference
Problem: Processing too many frames. Solution: Sample fewer frames or use efficient attention.