image-quality
image-quality copied to clipboard
LIVE Database - InvalidArgumentError: Incompatible shapes: [1,512,640,1] vs. [1,512,768,1]
Describe the bug Incompatible shapes of distorted image and reference image e.g., [1,512,640,1] vs. [1,512,768,1] Additional context
Generating splits...: 0%| | 0/1 [00:00<?, ? splits/s]
Generating train examples...: 0 examples [00:00, ? examples/s]
Generating train examples...: 19 examples [00:00, 181.01 examples/s]
Generating train examples...: 38 examples [00:00, 149.12 examples/s]
Generating train examples...: 60 examples [00:00, 174.94 examples/s]
Generating train examples...: 82 examples [00:00, 188.24 examples/s]
Generating train examples...: 104 examples [00:00, 198.14 examples/s]
Generating train examples...: 126 examples [00:00, 204.00 examples/s]
Generating train examples...: 147 examples [00:00, 201.46 examples/s]
Generating train examples...: 169 examples [00:00, 205.96 examples/s]
Generating train examples...: 192 examples [00:00, 212.83 examples/s]
Generating train examples...: 214 examples [00:01, 211.54 examples/s]
Generating train examples...: 236 examples [00:01, 208.02 examples/s]
Generating train examples...: 257 examples [00:01, 206.73 examples/s]
Generating train examples...: 280 examples [00:01, 212.56 examples/s]
Generating train examples...: 303 examples [00:01, 216.27 examples/s]
Generating train examples...: 325 examples [00:01, 216.36 examples/s]
Generating train examples...: 347 examples [00:01, 216.33 examples/s]
Generating train examples...: 369 examples [00:01, 212.84 examples/s]
Generating train examples...: 391 examples [00:01, 214.28 examples/s]
Generating train examples...: 414 examples [00:02, 217.33 examples/s]
Generating train examples...: 437 examples [00:02, 217.85 examples/s]
Generating train examples...: 460 examples [00:02, 219.43 examples/s]
Generating train examples...: 483 examples [00:02, 219.75 examples/s]
Generating train examples...: 505 examples [00:02, 88.23 examples/s]
Generating train examples...: 537 examples [00:03, 120.89 examples/s]
Generating train examples...: 566 examples [00:03, 149.55 examples/s]
Generating train examples...: 596 examples [00:03, 178.65 examples/s]
Generating train examples...: 629 examples [00:03, 210.29 examples/s]
Generating train examples...: 660 examples [00:03, 232.55 examples/s]
Generating train examples...: 689 examples [00:03, 234.80 examples/s]
Generating train examples...: 720 examples [00:03, 253.02 examples/s]
Generating train examples...: 749 examples [00:03, 258.52 examples/s]
Generating train examples...: 779 examples [00:03, 268.77 examples/s]
Generating train examples...: 809 examples [00:03, 275.49 examples/s]
Generating train examples...: 838 examples [00:04, 276.63 examples/s]
Generating train examples...: 867 examples [00:04, 278.53 examples/s]
Generating train examples...: 896 examples [00:04, 275.07 examples/s]
Generating train examples...: 925 examples [00:04, 278.95 examples/s]
Generating train examples...: 955 examples [00:04, 284.23 examples/s]
Shuffling live_iqa-train.tfrecord...: 0%| | 0/982 [00:00<?, ? examples/s]
Shuffling live_iqa-train.tfrecord...: 1%| | 8/982 [00:00<00:12, 77.93 examples/s]
Shuffling live_iqa-train.tfrecord...: 3%|▎ | 25/982 [00:00<00:09, 103.51 examples/s]
Shuffling live_iqa-train.tfrecord...: 5%|▌ | 54/982 [00:00<00:05, 174.77 examples/s]
Shuffling live_iqa-train.tfrecord...: 10%|▉ | 95/982 [00:00<00:03, 258.37 examples/s]
Shuffling live_iqa-train.tfrecord...: 14%|█▍ | 138/982 [00:00<00:02, 312.05 examples/s]
Shuffling live_iqa-train.tfrecord...: 18%|█▊ | 179/982 [00:00<00:02, 342.56 examples/s]
Shuffling live_iqa-train.tfrecord...: 23%|██▎ | 222/982 [00:00<00:02, 367.32 examples/s]
Shuffling live_iqa-train.tfrecord...: 27%|██▋ | 262/982 [00:00<00:01, 376.23 examples/s]
Shuffling live_iqa-train.tfrecord...: 31%|███ | 304/982 [00:00<00:01, 386.46 examples/s]
Shuffling live_iqa-train.tfrecord...: 35%|███▌ | 345/982 [00:01<00:01, 392.81 examples/s]
Shuffling live_iqa-train.tfrecord...: 39%|███▉ | 387/982 [00:01<00:01, 399.83 examples/s]
Shuffling live_iqa-train.tfrecord...: 44%|████▎ | 428/982 [00:01<00:01, 402.38 examples/s]
Shuffling live_iqa-train.tfrecord...: 48%|████▊ | 471/982 [00:01<00:01, 409.98 examples/s]
Shuffling live_iqa-train.tfrecord...: 52%|█████▏ | 513/982 [00:01<00:01, 412.85 examples/s]
Shuffling live_iqa-train.tfrecord...: 57%|█████▋ | 555/982 [00:01<00:01, 410.27 examples/s]
Shuffling live_iqa-train.tfrecord...: 61%|██████ | 597/982 [00:01<00:00, 406.66 examples/s]
Shuffling live_iqa-train.tfrecord...: 65%|██████▌ | 639/982 [00:01<00:00, 408.25 examples/s]
Shuffling live_iqa-train.tfrecord...: 69%|██████▉ | 680/982 [00:01<00:00, 307.49 examples/s]
Shuffling live_iqa-train.tfrecord...: 73%|███████▎ | 715/982 [00:02<00:00, 317.52 examples/s]
Shuffling live_iqa-train.tfrecord...: 77%|███████▋ | 752/982 [00:02<00:00, 329.31 examples/s]
Shuffling live_iqa-train.tfrecord...: 81%|████████ | 793/982 [00:02<00:00, 349.73 examples/s]
Shuffling live_iqa-train.tfrecord...: 85%|████████▌ | 836/982 [00:02<00:00, 371.06 examples/s]
Shuffling live_iqa-train.tfrecord...: 89%|████████▉ | 875/982 [00:02<00:00, 334.28 examples/s]
Shuffling live_iqa-train.tfrecord...: 93%|█████████▎| 913/982 [00:02<00:00, 345.93 examples/s]
Shuffling live_iqa-train.tfrecord...: 97%|█████████▋| 953/982 [00:02<00:00, 358.83 examples/s]
Dataset live_iqa downloaded and prepared to /home/shuyuej/tensorflow_datasets/live_iqa/1.0.0. Subsequent calls will reuse this data.
Model: "objective_error_map"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
original_image (InputLayer) [(1, None, None, 1)] 0
_________________________________________________________________
Conv1 (Conv2D) (1, None, None, 48) 480
_________________________________________________________________
Conv2 (Conv2D) (1, None, None, 48) 20784
_________________________________________________________________
Conv3 (Conv2D) (1, None, None, 64) 27712
_________________________________________________________________
Conv4 (Conv2D) (1, None, None, 64) 36928
_________________________________________________________________
Conv5 (Conv2D) (1, None, None, 64) 36928
_________________________________________________________________
Conv6 (Conv2D) (1, None, None, 64) 36928
_________________________________________________________________
Conv7 (Conv2D) (1, None, None, 128) 73856
_________________________________________________________________
Conv8 (Conv2D) (1, None, None, 128) 147584
_________________________________________________________________
Conv9 (Conv2D) (1, None, None, 1) 129
=================================================================
Total params: 381,329
Trainable params: 381,329
Non-trainable params: 0
___________________________________________________________
step 0: mean loss = tf.Tensor(6.102439, shape=(), dtype=float32)
step 100: mean loss = tf.Tensor(0.8519581, shape=(), dtype=float32)
step 200: mean loss = tf.Tensor(0.7548247, shape=(), dtype=float32)
step 300: mean loss = tf.Tensor(0.7112402, shape=(), dtype=float32)
step 400: mean loss = tf.Tensor(0.6846403, shape=(), dtype=float32)
step 500: mean loss = tf.Tensor(0.65744716, shape=(), dtype=float32)
step 600: mean loss = tf.Tensor(0.64582705, shape=(), dtype=float32)
step 700: mean loss = tf.Tensor(0.62755895, shape=(), dtype=float32)
Traceback (most recent call last):
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/context.py", line 1986, in execution_mode
yield
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/data/ops/iterator_ops.py", line 652, in _next_internal
ret = gen_dataset_ops.iterator_get_next(
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/ops/gen_dataset_ops.py", line 2363, in iterator_get_next
_ops.raise_from_not_ok_status(e, name)
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 6653, in raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,512,640,1] vs. [1,512,768,1]
[[{{node sub_7}}]] [Op:IteratorGetNext]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/shuyuej/Desktop/Codes/DIQA/notebooks/train-LIVE.py", line 128, in <module>
for I_d, e_gt, r in train:
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/data/ops/iterator_ops.py", line 631, in __next__
return self.next()
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/data/ops/iterator_ops.py", line 670, in next
return self._next_internal()
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/data/ops/iterator_ops.py", line 661, in _next_internal
return structure.from_compatible_tensor_list(self._element_spec, ret)
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/contextlib.py", line 131, in __exit__
self.gen.throw(type, value, traceback)
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/context.py", line 1989, in execution_mode
executor_new.wait()
File "/home/shuyuej/.conda/envs/tf2/lib/python3.8/site-packages/tensorflow/python/eager/executor.py", line 67, in wait
pywrap_tfe.TFE_ExecutorWaitForAllPendingNodes(self._handle)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,512,640,1] vs. [1,512,768,1]
This is a weird one, I will look and let you know if I find a solution. If you find the solution before, could you share it here so the rest of the people can see it? Thanks