samd21-lora-gps icon indicating copy to clipboard operation
samd21-lora-gps copied to clipboard

Created SPI not working

Open k8zxc opened this issue 6 years ago • 4 comments

I've tested the LoRaWANTestOTAA.ino in this repo. Also, I created a new SPI following this tutorial: https://learn.adafruit.com/using-atsamd21-sercom-to-add-more-spi-i2c-serial-ports/creating-a-new-spi. I am absolutely a beginner and need a help. Here's my code.

/*******************************************************************************

  • Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
  • Permission is hereby granted, free of charge, to anyone
  • obtaining a copy of this document and accompanying files,
  • to do whatever they want with them without any restriction,
  • including, but not limited to, copying, modification and redistribution.
  • NO WARRANTY OF ANY KIND IS PROVIDED.
  • This example sends a valid LoRaWAN packet with payload "Hello,
  • world!", using frequency and encryption settings matching those of
  • the The Things Network.
  • This uses ABP (Activation-by-personalisation), where a DevAddr and
  • Session keys are preconfigured (unlike OTAA, where a DevEUI and
  • application key is configured, while the DevAddr and session keys are
  • assigned/generated in the over-the-air-activation procedure).
  • Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in
  • g1, 0.1% in g2), but not the TTN fair usage policy (which is probably
  • violated by this sketch when left running for longer)!
  • To use this sketch, first register your application and device with
  • the things network, to set or generate a DevAddr, NwkSKey and
  • AppSKey. Each device should have their own unique values for these
  • fields.
  • Do not forget to define the radio type correctly in config.h.

*******************************************************************************/

//#include<Arduino.h> #include <lmic.h> #include <hal/hal.h> #include <SPI.h> #include "wiring_private.h"

SPIClass SPI1 (&sercom1, 12, 13, 11, SPI_PAD_0_SCK_1, SERCOM_RX_PAD_3);

// LoRaWAN NwkSKey, network session key // This is the default Semtech key, which is used by the early prototype TTN // network. static const PROGMEM u1_t NWKSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };

// LoRaWAN AppSKey, application session key // This is the default Semtech key, which is used by the early prototype TTN // network. static const u1_t PROGMEM APPSKEY[16] = { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C };

// LoRaWAN end-device address (DevAddr) static const u4_t DEVADDR = 0x03FF0001 ; // <-- Change this address for every node!

// These callbacks are only used in over-the-air activation, so they are // left empty here (we cannot leave them out completely unless // DISABLE_JOIN is set in config.h, otherwise the linker will complain). void os_getArtEui (u1_t* buf) { } void os_getDevEui (u1_t* buf) { } void os_getDevKey (u1_t* buf) { }

static uint8_t mydata[] = "Hello, world!"; static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 60;

// Pin mapping const lmic_pinmap lmic_pins = { .nss = 6, .rxtx = LMIC_UNUSED_PIN, .rst = 5, .dio = {2, 3, 4}, };

void onEvent (ev_t ev) { SerialUSB.print(os_getTime()); SerialUSB.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: SerialUSB.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: SerialUSB.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: SerialUSB.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: SerialUSB.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: SerialUSB.println(F("EV_JOINING")); break; case EV_JOINED: SerialUSB.println(F("EV_JOINED")); break; case EV_RFU1: SerialUSB.println(F("EV_RFU1")); break; case EV_JOIN_FAILED: SerialUSB.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: SerialUSB.println(F("EV_REJOIN_FAILED")); break; case EV_TXCOMPLETE: SerialUSB.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) SerialUSB.println(F("Received ack")); if (LMIC.dataLen) { SerialUSB.println(F("Received ")); SerialUSB.println(LMIC.dataLen); SerialUSB.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: SerialUSB.println(F("EV_LOST_TSYNC")); break; case EV_RESET: SerialUSB.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot SerialUSB.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: SerialUSB.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: SerialUSB.println(F("EV_LINK_ALIVE")); break; default: SerialUSB.println(F("Unknown event")); break; } }

void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { SerialUSB.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, mydata, sizeof(mydata)-1, 0); SerialUSB.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. }

void setup() { SerialUSB.begin(115200); SerialUSB.println(F("Starting")); SPI1.begin(); pinPeripheral(11, PIO_SERCOM); pinPeripheral(12, PIO_SERCOM); pinPeripheral(13, PIO_SERCOM);

/*
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
*/

// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();

// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif

#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);      // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7),  BAND_CENTI);      // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK,  DR_FSK),  BAND_MILLI);      // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif

// Disable link check validation
LMIC_setLinkCheckMode(0);

// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;

// Set data rate and transmit power for uplink (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);

// Start job
do_send(&sendjob);

}

void loop() { os_runloop_once(); }

k8zxc avatar Feb 14 '19 13:02 k8zxc

What hardware are you trying to use this code on? The use of the alternative SPI definition is due to the fact that I built a custom board that did not have the primary SPI pins available, as defined by the Arduino Zero core. You should not need an alternative SPI SERCOM.

nootropicdesign avatar Feb 14 '19 23:02 nootropicdesign

The schematic of our development board is attached below.

We burned the Arduino Zero bootloader into it. The default SPI pins of zero were:

PA12 D22 / MISO SERCOM2.0 SERCOM4.0 PB10 D23 / MOSI SERCOM4.2 PB11 D24 / SCK SERCOM4.3

and we leave them unconnected. In the schematic, we used the pins 11, 12, and 13 of the Arduino for SPI knowing that muxing of SERCOM is possible.

node-sch pdf

k8zxc avatar Feb 15 '19 02:02 k8zxc

Which lmic library are you using? I created a fork that uses a different definition of SPI so that it works with the pins I used: https://github.com/nootropicdesign/arduino-lmic

Why did you comment out the #include of Arduino.h?

I do not know if my definitions of the SPI interface will work with the chip you are using. I used the SAMD21E, not the G.

nootropicdesign avatar Feb 15 '19 14:02 nootropicdesign

Thank you so much, Sir.

k8zxc avatar Feb 16 '19 01:02 k8zxc