neat-matrix-library
neat-matrix-library copied to clipboard
nml is a "simple" matrix/numerical analysis library written in pure C. The scope of the library is to highlight various algorithm implementations related to matrices. Code readability was a major conc...
.----------------. .----------------. .----------------.
| .--------------. || .--------------. || .--------------. |
| | ____ _____ | || | ____ ____ | || | _____ | |
| ||_ \|_ _| | || ||_ \ / _|| || | |_ _| | |
| | | \ | | | || | | \/ | | || | | | | |
| | | |\ \| | | || | | |\ /| | | || | | | _ | |
| | _| |_\ |_ | || | _| |_\/_| |_ | || | _| |__/ | | |
| ||_____|\____| | || ||_____||_____|| || | |________| | |
| | | || | | || | | |
| '--------------' || '--------------' || '--------------' | Neat Matrix Library
'----------------' '----------------' '----------------'
nml is a simple matrix and linear algebra library written in standard C.
Code should be portable and there are no dependencies.
For a detailed explanation of the library code please check this blog post.
It currently supports:
- Basic Matrix Operations (row swaps, colum swaps, multiplication, addition, etc.)
- LU Decomposition;
- Inverse(A);
- Determinant(A)
- Solving linear systems of equations;
- Row Echelon Form;
- Reduced Row Echelon Form (Gauss-Jordan);
- QR decomposition
The library is still under development, but a few thousands test cases are already implemented, covering the most complex algorithms (REF, RREF, LUP, QR, DET, INV, BACKWARD SUBSTITION, FORWARD SUBSTITION, etc.)
Table of Contents
-
Compile / Run Examples
- Building the library
- Building the examples
- Running the tests
- Cleaning
-
How to use the library
-
Creating matrices
- Creating a new Matrix
- Creating a marray from an array (double[N])
- Creating a Matrix from an external file
- Creating a matrix from user input
- Creating randomized matrices
- Check if two matrices are equal
-
Accesing and modifying matrix elements
- Select rows and columns
- Set all elements to a value
- Set the first diagonal to a value
- Scalar multiply the matrix
- Multiply rows
- Add rows
-
Modifying the matrix structure
- Remove rows and columns
- Swap rows and columns
- Concatenate matrices
-
Matrices operations
- Add and subtract matrices
- Multiply matrices (dot)
- Transpose matrices
- Calculate trace
-
Row Echelon
- Calculate Row Echelon Form using Gaussian Elimination
- Calculate Reduced Row Echelon Form using Gauss-Jordan
- LU(P) Decomposition
- Matrix inverse
- Matrix determinant
- Solve linear systems of equations
-
Creating matrices
Compile / Run Examples
The build file for the library it's called nml.sh
.
It's actually a bash
script (not a makefile
!).
Building the library
./nml.sh clean build
This will compile the library, create a dist
folder where you will find *.a
static library file and the header files.
gcc
and ar
should be available in $PATH
.
If you want to use the clang
compiler instead of gcc
you need to manually edit the ./nml.sh
file, changing the variable CC
from gcc
to clang
.
Nothing else should be changed.
# COMPILING RELATED
CC=clang #<----------------- here
CCFLAGS="-Wall -c"
CCFLAGS_EXAMPLES="-Wall"
Building the examples
Examples can be found in the ./examples
folder.
To build the code examples:
./nml.sh clean examples
- This will create an
examples/lib
folder where thelibnml.a
and the header files will be copied; - The
examples/*.c
will be compiled with the latest version oflibnml
; - For each
examples/*.c
an executable (*.ex
) will be created.
To run an example:
# ./nml.sh clean examples && ./examples/<example name>.ex
./nml.sh clean examples && ./examples/playground.ex
Running the tests
To run the tests
./nml.sh clean test
- This will create a
test/lib
folder where thelibnml.a
and the header files will be copied; - Each test
tests/*.c
will be compiled with the latest version oflibnml
; - For each test
tests/*/c
an executable (*.ex
) will be created.
The test data was generated using sympy.
In the tests/generators/
folder you can find the python3 (.py
) scripts used to generate the data.
Cleaning
./nml.sh clean
This will clean everything (*.o
,*.ex
,*.a
) and will leave the library folder in a clean state.
How to use the library
A few examples can be found in the ./examples
folder folder.
Creating matrices
All the methods are interacting with the nml_mat
struct:
typedef struct nml_mat_s {
unsigned int num_rows;
unsigned int num_cols;
double **data;
int is_square;
} nml_mat;
To interact the elements of the matrix:
nml_mat *m = ...
m->data[i][j] = ...
Creating a new Matrix
The methods for a creating a new matrix are:
-
nml_mat *nml_mat_new(unsigned int num_rows, unsigned int num_cols)
- Creates a
num_rows * num_cols
matrix of zeroes.
- Creates a
-
nml_mat *nml_mat_sqr(unsigned int size)
- Creates a square
size * size
matrix of zeroes.
- Creates a square
-
nml_mat *nml_mat_eye(unsigned int size)
- Creates an identity
size * size
matrix.
- Creates an identity
-
nml_mat *nml_mat_cp(nml_mat *m)
- Returns a new identitcal copy of matrix
m
.
- Returns a new identitcal copy of matrix
Everytime we create a matrix, we dynamically allocate memory.
To free the memory please use: nml_mat_free(nml_mat *m)
.
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat* m, *mx;
printf("\nCreating an empty matrix with 2x3\n");
m = nml_mat_new(2,3);
nml_mat_print(m);
nml_mat_free(m);
printf("\nCreating a square matrix 5x5 \n");
m = nml_mat_sqr(5);
nml_mat_print(m);
nml_mat_free(m);
printf("\nCreating an ID 7x7 Matrix and copying it into another matrix:\n");
m = nml_mat_eye(7);
mx = nml_mat_cp(m);
nml_mat_print(m);
nml_mat_print(mx);
nml_mat_free(m);
nml_mat_free(mx);
return 0;
}
To run the example:
./nml.sh clean examples && examples/creating_a_matrix.ex
Creating a marray from an array (double[N]
)
An array can be used as the "data source" for the Matrix by using:
-
nml_mat *nml_mat_from(unsigned int num_rows, unsigned int num_cols, unsigned int n_vals, double *vals)
-
num_rows
andnum_cols
represent the dimensions of the matrix; -
n_vals
how many values to read from thevals
source. Ifn_vals
is smaller than the productnum_cols * num_rows
,0.0
will be used as the default value; -
vals
the array containing double values.
-
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
double array[6] = {
1.0, 0.2, 3.0, 4.0, 5.0, 3.1
};
nml_mat* my;
// 3 rows, 2 columns
// read exactly 6 numbers from array[6]
my = nml_mat_from(3, 2, 6, array);
nml_mat_print(my);
nml_mat_free(my);
// 4 rows, 2 columns
// read exactly 3 numbers from array[6]
my = nml_mat_from(4, 2, 3, array);
nml_mat_print(my);
nml_mat_free(my);
return 0;
}
To run the example:
./nml.sh clean examples && examples/creating_a_matrix_from_an_array.ex
Creating a Matrix from an external file
The two methods that can be used to create a matrix from a file on disk are:
-
nml_mat *nml_mat_fromfile(const char *file)
- Create a matrix from the
file
path. If the file cannot be opened aNULL
matrix will be returned.
- Create a matrix from the
-
nml_mat *nml_mat_fromfilef(FILE *f)
- Creates a matrix from am already opened stream
f
. Does not automatically close the stream (FILE
).
- Creates a matrix from am already opened stream
In the file, the matrix has the following format:
4 5
0.0 1.0 2.0 5.0 3.0
3.0 8.0 9.0 1.0 4.0
2.0 3.0 7.0 1.0 1.0
0.0 0.0 4.0 3.0 8.0
On the first line 4
represents the number of rows and 5
represents the number of columns of the Matrix
Then next lines contain the matrix elements: 4 * 5 = 20
numbers.
Example code:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
const char *f = "examples/data/matrix1.data";
nml_mat *from_file = nml_mat_fromfile(f);
nml_mat_print(from_file);
nml_mat_free(from_file);
// Or if the file is already opened
FILE *m_file = fopen("examples/data/matrix2.data", "r");
nml_mat *from_file2 = nml_mat_fromfilef(m_file);
nml_mat_print(from_file2);
nml_mat_free(from_file2);
fclose(m_file);
return 0;
}
To run the example:
./nml.sh clean examples && ./examples/creating_a_matrix_from_file.ex
Creating a matrix from user input
The nml_mat *nml_mat_fromfilef(FILE *f)
can be called, with f=stdin
.
Code example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *from_file2 = nml_mat_fromfilef(stdin);
nml_mat_print(from_file2);
nml_mat_free(from_file2);
return 0;
}
To run the example:
./nml.sh clean examples && examples/creating_a_matrix_from_user_input.ex
Creating randomized matrices
Creating a randomized matrix can be done with the following two methods:
-
nml_mat *nml_mat_rnd(unsigned int num_rows, unsigned int num_cols, double min, double max)
- Creates a randomized matrix of size
num_rows * num_cols
; - The random values are between
min
andmax
;
- Creates a randomized matrix of size
-
nml_mat *nml_mat_sqr_rnd(unsigned int size, double min, double max)
- Creates a randomized matrix of size
size * size
; - The random values are between
min
andmax
;
- Creates a randomized matrix of size
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
srand(time(NULL)); // Should be called once per program
nml_mat *m = nml_mat_rnd(5, 5, -10.0, 10.0);
nml_mat_print(m);
nml_mat_free(m);
return 0;
}
To run the example:
./nml.sh clean examples && examples/create_randomized_matrix.ex
Check if two matrices are equal
There are two "equality" methods for matrices:
-
int nml_mat_eqdim(nml_mat *m1, nml_mat *m2)
- Tests if two matrices have the same dimension.
-
int nml_mat_eq(nml_mat *m1, nml_mat *m2, double tolerance)
- Test if two matrices are equal:
- They have the same dimensions
- The elements are equal or close of being equal.
- If you want the elements to be "exactly" eqaul,
tolerance=0.0
- Test if two matrices are equal:
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
srand(time(NULL));
nml_mat *m1 = nml_mat_rnd(2, 3, 1.0, 10.0);
nml_mat *m2 = nml_mat_rnd(2, 3, 1.0, 10.0);
if (nml_mat_eq(m1, m2, 0.001)) {
printf("Wow, what were the oddss..\n");
} else {
printf("It's ok, nobody is that lucky!\n");
}
if (nml_mat_eqdim(m1, m2)) {
printf("At least we know they both have the same number of rows and columns.\n");
}
nml_mat_free(m1);
nml_mat_free(m2);
return 0;
}
To run the example:
./nml.sh clean examples && ./examples/matrix_equality.ex
Accesing and modifying matrix elements
Select rows and columns
Two methods can be used to select rows and columns from a source matrix (nml_mat*
):
-
nml_mat *nml_mat_col_get(nml_mat *m, unsigned int col)
-
nml_mat *nml_mat_row_get(nml_mat *m, unsigned int row)
The following code extracts every column of a given random matrix into a temporary column matrix (nml_mat*
):
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
printf("\nExtract all matrix columns from a Matrix as matrices\n");
srand(time(NULL));
nml_mat *m = nml_mat_rnd(5, 5, -10.0, 10.0);
nml_mat *col;
nml_mat_print(m);
int i = 0;
for(i = 0; i < m->num_cols; i++) {
col = nml_mat_col_get(m, i);
nml_mat_print(col);
nml_mat_free(col);
}
nml_mat_free(m);
return 0;
}
To run the example:
./nml.sh clean examples && examples/select_columns.ex
Set all elements to a value
Use: void nml_mat_all_set(nml_mat *matrix, double value)
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
// Creates a matrix of zeros of size = 5
nml_mat *pi_mat = nml_mat_sqr(5);
// Sets all elements to PI
nml_mat_all_set(pi_mat, M_PI);
nml_mat_print(pi_mat);
nml_mat_free(pi_mat);
return 0;
}
To run the example:
./nml.sh clean examples && ./examples/set_all_elements.ex
Set the first diagonal to a value
Use: int nml_mat_diag_set(nml_mat *matrix, double value)
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
// Creates a matrix of zeros of size = 5
nml_mat *pi_mat = nml_mat_sqr(5);
// Sets the first diagonal to PI
nml_mat_diag_set(pi_mat, M_PI);
nml_mat_print(pi_mat);
nml_mat_free(pi_mat);
return 0;
}
To run the example:
./nml.sh clean examples && examples/set_diagonal_elements.ex
Scalar multiply the matrix
Use:
-
nml_mat *nml_mat_smult(nml_mat *m, double num)
- Multiplies all elements of matrix
m
withnum
. A new matrix is returned.
- Multiplies all elements of matrix
-
int nml_mat_smult_r(nml_mat *m, double num)
- Multiplies all elements of matrix
m
withnum
. All changes are done on matrixm
.
- Multiplies all elements of matrix
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m = nml_mat_eye(5);
// Multiply all elements of m with 2.0
// and return a new matrix
nml_mat *new_m = nml_mat_smult(m, 2.0);
if (!(nml_mat_eq(m, new_m, 0.0))) {
printf("It's normal to see this message.\n");
}
// Multiply all elements of m with 2.0
// m is modified, no new matrix is created
nml_mat_smult_r(m, 2.0);
if (nml_mat_eq(m, new_m, 0.0)) {
printf("It's even more normal to see this message.\n");
}
nml_mat_free(m);
nml_mat_free(new_m);
return 0;
}
To run the example:
./nml.sh clean examples && examples/scalar_multiply.ex
Multiply rows
Use:
-
nml_mat *nml_mat_row_mult(nml_mat *m, unsigned int row, double num)
- Multiplies all elements from row
row
in matrixm
with scalarnum
. A new matrix is returned.m
remains un-altered.
- Multiplies all elements from row
-
int nml_mat_row_mult_r(nml_mat *m, unsigned int row, double num)
- Multiplies all elements from row
row
in matrixm
with scalarnum
. The changes are done directly on matrixm
.
- Multiplies all elements from row
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *a = nml_mat_new(4,5);
nml_mat_all_set(a, 1.0);
int i = 0;
for(; i < a->num_rows; ++i) {
// Changes are doing on matrix a
// row[i] is multiplied with (double) i
nml_mat_row_mult_r(a, i, (double)i);
}
nml_mat_print(a);
// Create a new matrix b by multiplying row[1]
// in matrix a with 5.0.
// Matrix a remains unchanged
nml_mat *b = nml_mat_row_mult(a, 1, 5.0);
nml_mat_print(b);
nml_mat_free(a);
nml_mat_free(b);
return 0;
}
To run the example:
./nml.sh clean examples && examples/multiply_rows.ex
To run the example:
./nml.sh clean examples && examples/multiply_rows.ex
Add rows
The following methods are used to add a row to another row (with a multiplicator). This method is usally used when implementing various forms of matrix reduction or decompositions.
Use:
-
nml_mat *nml_mat_row_addrow(nml_mat *m, unsigned int where, unsigned int row, double multiplier)
- This will do the following:
m->data[where][...] *= m->data[row][...] * multiplier
. The results will be kept in a new matrix. Matrixm
remains unchanged.
- This will do the following:
-
int nml_mat_row_addrow_r(nml_mat *m, unsigned int where, unsigned int row, double multiplier)
- This will do the following:
m->data[where][...] *= m->data[row][...] * multiplier
. The changes are done directly onm
.
- This will do the following:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m = nml_mat_rnd(5, 4, 1.0, 2.0);
nml_mat_print(m);
// Add row[1] elements to row[2] elements
nml_mat_row_addrow_r(m, 2, 1, 1.0);
// Add row[1] to row[0] with a multiplier of 2.0
nml_mat_row_addrow_r(m, 0, 1, 2.0);
nml_mat_print(m);
nml_mat_free(m);
return 0;
}
To run the example:
./nml.sh clean examples && ./examples/row_plus_row.ex
Modifying the matrix structure
Remove rows and columns
To remove columns:
-
nml_mat *nml_mat_col_rem(nml_mat *m, unsigned int column)
- A new matrix is being created,
m
remains the same.
- A new matrix is being created,
To remove rows:
-
nml_mat *nml_mat_row_rem(nml_mat *m, unsigned int row)
- A new matrix is being created,
m
remains the same.
- A new matrix is being created,
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m = nml_mat_sqr_rnd(4, 1.0, 2.0);
nml_mat_print(m);
// Remove column[1] from m
// m remains the same
// less_columns is another matrix
nml_mat *less_columns = nml_mat_col_rem(m, 1);
nml_mat_print(less_columns);
// Remove row[0] from less_columns
// less_columns remains the same
// less_rows is another matrix
nml_mat *less_rows = nml_mat_row_rem(less_columns, 0);
nml_mat_print(less_rows);
nml_mat_free(m);
nml_mat_free(less_columns);
nml_mat_free(less_rows);
return 0;
}
To run the example:
./nml.sh examples && ./examples/remove_columns_rows.ex
Swap rows and columns
Use:
-
nml_mat *nml_mat_row_swap(nml_mat *m, unsigned int row1, unsigned int row2)
-
int nml_mat_row_swap_r(nml_mat *m, unsigned int row1, unsigned int row2)
-
nml_mat *nml_mat_col_swap(nml_mat *m, unsigned int col1, unsigned int col2)
-
int nml_mat_col_swap_r(nml_mat *m, unsigned int col1, unsigned int col2)
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
srand(time(NULL));
nml_mat *m = nml_mat_sqr_rnd(8, 0.0, 10.0);
printf("m=");
nml_mat_print(m);
printf("m= (...after swapping col1=%d with col2=%d):\n", 1, 2);
nml_mat_col_swap_r(m, 1, 2);
nml_mat_print(m);
printf("newm= (...after swapping col1=%d with col2=%d and creating a new matrix):\n", 0, 1);
nml_mat *newm = nml_mat_col_swap(m, 0, 1);
nml_mat_print(newm);
printf("m= (...after swapping row1=%d with row2=%d)\n", 0, 2);
nml_mat_row_swap_r(m, 0, 2);
nml_mat_print(m);
nml_mat_free(m);
nml_mat_free(newm);
return 0;
}
Output:
m=
3.467541 8.965948 0.685298 7.802247 2.363902 0.097955 6.325767 7.162469
9.613042 6.399923 3.512556 5.528620 9.520015 2.886378 1.363232 1.838682
2.722997 5.410983 2.397803 9.870863 9.601451 1.591262 4.335792 1.660161
2.318266 3.094436 8.189400 9.242210 3.818718 1.198454 2.423213 6.939399
0.471069 7.252268 8.869578 0.994544 5.301898 9.007567 0.172999 7.586261
2.295128 4.212713 3.072580 0.849523 7.941120 6.407214 6.049472 3.469933
9.157250 5.896395 0.705688 0.491878 6.985944 2.762460 8.673238 1.114106
4.783565 7.369584 0.592299 4.774641 7.395844 1.942471 7.115440 9.204845
m= (...after swapping col1=1 with col2=2):
3.467541 0.685298 8.965948 7.802247 2.363902 0.097955 6.325767 7.162469
9.613042 3.512556 6.399923 5.528620 9.520015 2.886378 1.363232 1.838682
2.722997 2.397803 5.410983 9.870863 9.601451 1.591262 4.335792 1.660161
2.318266 8.189400 3.094436 9.242210 3.818718 1.198454 2.423213 6.939399
0.471069 8.869578 7.252268 0.994544 5.301898 9.007567 0.172999 7.586261
2.295128 3.072580 4.212713 0.849523 7.941120 6.407214 6.049472 3.469933
9.157250 0.705688 5.896395 0.491878 6.985944 2.762460 8.673238 1.114106
4.783565 0.592299 7.369584 4.774641 7.395844 1.942471 7.115440 9.204845
newm= (...after swapping col1=0 with col2=1 and creating a new matrix):
0.685298 3.467541 8.965948 7.802247 2.363902 0.097955 6.325767 7.162469
3.512556 9.613042 6.399923 5.528620 9.520015 2.886378 1.363232 1.838682
2.397803 2.722997 5.410983 9.870863 9.601451 1.591262 4.335792 1.660161
8.189400 2.318266 3.094436 9.242210 3.818718 1.198454 2.423213 6.939399
8.869578 0.471069 7.252268 0.994544 5.301898 9.007567 0.172999 7.586261
3.072580 2.295128 4.212713 0.849523 7.941120 6.407214 6.049472 3.469933
0.705688 9.157250 5.896395 0.491878 6.985944 2.762460 8.673238 1.114106
0.592299 4.783565 7.369584 4.774641 7.395844 1.942471 7.115440 9.204845
m= (...after swapping row1=0 with row2=2)
2.722997 2.397803 5.410983 9.870863 9.601451 1.591262 4.335792 1.660161
9.613042 3.512556 6.399923 5.528620 9.520015 2.886378 1.363232 1.838682
3.467541 0.685298 8.965948 7.802247 2.363902 0.097955 6.325767 7.162469
2.318266 8.189400 3.094436 9.242210 3.818718 1.198454 2.423213 6.939399
0.471069 8.869578 7.252268 0.994544 5.301898 9.007567 0.172999 7.586261
2.295128 3.072580 4.212713 0.849523 7.941120 6.407214 6.049472 3.469933
9.157250 0.705688 5.896395 0.491878 6.985944 2.762460 8.673238 1.114106
4.783565 0.592299 7.369584 4.774641 7.395844 1.942471 7.115440 9.204845
To run the example:
./nml.sh examples && ./examples/swap_rows_and_columns.ex
Concatenate matrices
Two or more matrices can be concatenated (horizontally) or (vertically) into one matrix.
To achieve this, please use:
-
nml_mat *nml_mat_cath(unsigned int mnun, nml_mat **matrices)
- For horizontal concatenation. A new matrix is returned.
-
num
represents the number of matrices to concatenate. -
matrices
the matrices to be concatenated.
-
nml_mat *nml_mat_catv(unsigned int mnum, nml_mat **matrices)
- For vertical concatenation. A new matrix is returned.
-
num
represents the number of matrices to concatenate. -
matrices
the matrices to be concatenated.
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *I = nml_mat_eye(3);
nml_mat *Ix2 = nml_mat_smult(I, 2.0);
nml_mat *rndm = nml_mat_rnd(3, 4, 1.0, 5.0);
nml_mat **ms = malloc(sizeof(*ms) * 2);
ms[0] = I;
ms[1] = Ix2;
nml_mat *concats1 = nml_mat_cath(2, ms);
ms[0] = concats1;
ms[1] = rndm;
nml_mat *concats2 = nml_mat_cath(2, ms);
printf("\nConcatenate horizontally\n");
printf("I=\n");
nml_mat_print(I);
printf("Ix2=\n");
nml_mat_print(Ix2);
printf("rndm=\n");
nml_mat_print(rndm);
printf("concats1=\n");
nml_mat_print(concats1);
printf("concats2=\n");
nml_mat_print(concats2);
free(ms);
nml_mat_free(I);
nml_mat_free(Ix2);
nml_mat_free(concats1);
nml_mat_free(concats2);
nml_mat_free(rndm);
// -------------------------------------
// Vertical concatenation
// -------------------------------------
nml_mat *A = nml_mat_rnd(3, 4, 1.0, 4.0);
nml_mat *B = nml_mat_rnd(5, 4, 10.0, 20.0);
nml_mat *C = nml_mat_eye(4);
nml_mat **ABarr = malloc(sizeof(*ABarr) * 2);
ABarr[0] = A;
ABarr[1] = B;
nml_mat *ABCat = nml_mat_catv(2, ABarr);
printf("\nA=\n");
nml_mat_print(A);
printf("\nB=\n");
nml_mat_print(B);
printf("\nC=\n");
nml_mat_print(C);
printf("\nA concat B =\n");
nml_mat_print(ABCat);
free(ABarr);
nml_mat_free(A);
nml_mat_free(B);
nml_mat_free(C);
return 0;
}
To run the example:
./nml.sh clean examples && ./examples/concatenate_matrices.ex
Matrices operations
Add and subtract matrices
To add or subtract two matrices, the following methods can be used:
-
nml_mat *nml_mat_add(nml_mat *m1, nml_mat *m2)
- Adds two matrices, the results are kept in a new
nml_mat*
.m1
andm2
remain unchanged.
- Adds two matrices, the results are kept in a new
-
int nml_mat_add_r(nml_mat *m1, nml_mat *m2)
- Add two matrices, the results are kept in
m1
.m2
remains unchanged.
- Add two matrices, the results are kept in
-
nml_mat *nml_mat_sub(nml_mat *m1, nml_mat *m2)
- Subtracts two matrices, the results are kept in a new
nml_mat*
.m1
andm2
remain unchanged.
- Subtracts two matrices, the results are kept in a new
-
int nml_mat_sub_r(nml_mat *m1, nml_mat *m2)
- Subtracts two matrices, the results are kept in
m1
.m2
remains unchanged.
- Subtracts two matrices, the results are kept in
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m1 = nml_mat_sqr_rnd(4, 0.0, 10.0);
nml_mat *m2 = nml_mat_sqr_rnd(4, 0.0, 10.0);
printf("m1=\n");
nml_mat_print(m1);
printf("m2=\n");
nml_mat_print(m2);
// Add the matrices to, result is kept in m3
// m1 and m2 remain unchanged
nml_mat *m3 = nml_mat_add(m1, m2);
printf("m3=\n");
nml_mat_print(m3);
// Add the matrices, the result is kept in m1
// m1 is modified, m2 remains unchanged
nml_mat_add_r(m1, m2);
printf("m1=\n");
nml_mat_print(m1);
nml_mat_free(m1);
nml_mat_free(m2);
nml_mat_free(m3);
return 0;
}
To run the example:
./nml.sh examples && examples/add_matrices.ex
Multiply matrices (dot)
To multiply two matrices, the following method can be used:
-
nml_mat *nml_mat_dot(nml_mat *m1, nml_mat *m2)
- Multiplies two matrices, the result is kept in a new
nml_mat*
.m1
andm2
remain unchanged.
- Multiplies two matrices, the result is kept in a new
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m1 = nml_mat_sqr_rnd(4, 0.0, 10.0);
nml_mat *m2 = nml_mat_sqr_rnd(4, 0.0, 10.0);
printf("m1=\n");
nml_mat_print(m1);
printf("m2=\n");
nml_mat_print(m2);
// Multiply matrices
nml_mat *m3 = nml_mat_dot(m1, m2);
printf("m3=\n");
nml_mat_print(m3);
nml_mat_free(m1);
nml_mat_free(m2);
nml_mat_free(m3);
return 0;
}
To run the example:
./nml.sh examples && examples/dot_matrices.ex
Transpose matrices
To transpose a matrix, the following method can be used:
-
nml_mat *nml_mat_transp(nml_mat *m)
- A new
nml_mat*
will be created, representing the transpose matrix ofm
.m
remains unchanged.
- A new
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m1 = nml_mat_rnd(1, 5, 1.0, 10.0);
nml_mat_print(m1);
nml_mat *m2 = nml_mat_transp(m1);
nml_mat_print(m2);
nml_mat_free(m1);
nml_mat_free(m2);
return 0;
}
To run the example:
./nml.sh clean examples && examples/transpose.ex
Calculate trace
To calculate the trace of the matrix the following method can be used: double nml_mat_trace(nml_mat* m)
.
Row Echelon
Calculate Row Echelon Form using Gaussian Elimination
To bring the matrix in Row Echelon Form the following method can be used: nml_mat *nml_mat_ref(nml_mat *m)
.
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
double v1[9] = {
0.0, 1.0, 2.0,
1.0, 2.0, 1.0,
2.0, 7.0, 8.0
};
nml_mat *m1 = nml_mat_from(3, 3, 9, v1);
printf("\nm1=\n");
nml_mat_print(m1);
nml_mat *refm1 = nml_mat_ref(m1);
printf("\nrefm1=\n");
nml_mat_print(refm1);
nml_mat_free(m1);
nml_mat_free(refm1);
return 0;
}
Output:
m1=
0.000000 1.000000 2.000000
1.000000 2.000000 1.000000
2.000000 7.000000 8.000000
refm1=
1.000000 2.000000 1.000000
0.000000 1.000000 2.000000
0.000000 0.000000 0.000000
To run the example:
./nml.sh examples && ./examples/row_echelon.ex
Calculate Reduced Row Echelon Form using Gauss-Jordan
To bring the matrix in Reduced Row Echelon Form the following method can be used: nml_mat *nml_mat_rref(nml_mat *m)
.
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
double v1[9] = {
0.0, 1.0, 2.0,
1.0, 2.0, 1.0,
2.0, 7.0, 8.0
};
nml_mat *m1 = nml_mat_from(3, 3, 9, v1);
printf("\nm1=\n");
nml_mat_print(m1);
nml_mat *rrefm1 = nml_mat_rref(m1);
printf("\nrrefm1=\n");
nml_mat_print(rrefm1);
nml_mat_free(m1);
nml_mat_free(rrefm1);
return 0;
}
Output:
m1=
0.000000 1.000000 2.000000
1.000000 2.000000 1.000000
2.000000 7.000000 8.000000
rrefm1=
1.000000 0.000000 -3.000000
-0.000000 1.000000 2.000000
0.000000 0.000000 0.000000
To run the example:
./nml.sh clean examples && examples/reduced_row_echelon.ex
LU(P) Decomposition
To decompose a matrix using LU you can use: nml_mat_lup *nml_mat_lup_solve(nml_mat *m)
.
The result is a pointer nml_mat_lup*
:
typedef struct nml_mat_lup_s {
nml_mat *L;
nml_mat *U;
nml_mat *P;
unsigned int num_permutations;
} nml_mat_lup;
To free the nml_mat_lup*
. Please use void nml_mat_lup_free(nml_mat_lup* lu)
. This will also deallocate the memory for the three internal nml_mat*
pointers.
LU decomposition is used for solving linear systems of equations, computing the determinant and the inverse of a matrix.
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m1 = nml_mat_sqr_rnd(4, 0.0, 10.0);
printf("m1=\n");
nml_mat_print(m1);
nml_mat_lup *m1_lup = nml_mat_lup_solve(m1);
printf("L, U, P:\n");
nml_mat_lup_print(m1_lup);
nml_mat_free(m1);
nml_mat_lup_free(m1_lup);
return 0;
}
Output:
m1=
0.000078 1.315378 7.556053 4.586501
5.327672 2.189592 0.470446 6.788647
6.792964 9.346929 3.835021 5.194164
8.309653 0.345721 0.534616 5.297002
L, U, P:
1.000000 0.000000 0.000000 0.000000
0.817479 1.000000 0.000000 0.000000
0.000009 0.145116 1.000000 0.000000
0.641143 0.217108 -0.086373 1.000000
8.309653 0.345721 0.534616 5.297002
0.000000 9.064309 3.397983 0.863978
0.000000 0.000000 7.062947 4.461075
0.000000 0.000000 0.000000 3.590254
0.000000 0.000000 0.000000 1.000000
0.000000 0.000000 1.000000 0.000000
1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
Running the example:
./nml.sh clean examples && examples/lup.ex
Matrix inverse
Calculating the inverse requires to decompose the matrix LU(P) decomposition first.
Afterwards obtaining the inverse is straightforward: nml_mat *nml_mat_inv(nml_mat_lup *m)
.
Example:
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
printf("\nInverse of a matrix:\n");
double m_v[16] = {
2.0, 7.0, 6.0, 1.0,
9.0, 5.0, 0.0, 2.0,
4.0, 3.0, 8.0, 3.0,
3.0, 5.0, 1.0, 9.0
};
nml_mat *m = nml_mat_from(4,4,16, m_v);
nml_mat_lup *lup = nml_mat_lup_solve(m);
nml_mat* minv = nml_mat_inv(lup);
nml_mat *mdotminv = nml_mat_dot(m, minv);
printf("m=");
nml_mat_print(m);
printf("minv=");
nml_mat_print(minv);
printf("(%%e) m * minv=");
nml_mat_printf(mdotminv, "%e\t");
printf("(%%f) m * minv=");
nml_mat_printf(mdotminv, "%f\t");
nml_mat_free(m);
nml_mat_free(minv);
nml_mat_free(mdotminv);
return 0;
}
Output:
m=
2.000000 7.000000 6.000000 1.000000
9.000000 5.000000 0.000000 2.000000
4.000000 3.000000 8.000000 3.000000
3.000000 5.000000 1.000000 9.000000
minv=
-0.081577 0.112583 0.065924 -0.037929
0.174895 0.013245 -0.133955 0.022276
0.001505 -0.046358 0.127935 -0.032511
-0.070138 -0.039735 0.038230 0.114991
(%e) m * minv=
1.000000e+00 4.163336e-17 4.163336e-17 -1.387779e-17
0.000000e+00 1.000000e+00 -2.775558e-17 2.775558e-17
5.551115e-17 6.938894e-17 1.000000e+00 5.551115e-17
0.000000e+00 5.551115e-17 -5.551115e-17 1.000000e+00
(%f) m * minv=
1.000000 0.000000 0.000000 -0.000000
0.000000 1.000000 -0.000000 0.000000
0.000000 0.000000 1.000000 0.000000
0.000000 0.000000 -0.000000 1.000000
To run the example:
./nml.sh clean examples && ./examples/inverse.ex
Matrix determinant
Calculating the determinant requires to decompose the matrix LU(P) decomposition first.
Afterwards obtaining the determinant is straightforward: double nml_mat_det(nml_mat_lup* lup)
.
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *m1 = nml_mat_sqr_rnd(4, 0.0, 10.0);
nml_mat_lup *m1_lup = nml_mat_lup_solve(m1);
printf("m1=\n");
nml_mat_print(m1);
printf("determinant=%lf\n", nml_mat_det(m1_lup));
nml_mat_free(m1);
nml_mat_lup_free(m1_lup);
return 0;
}
Output:
m1=
0.000078 1.315378 7.556053 4.586501
5.327672 2.189592 0.470446 6.788647
6.792964 9.346929 3.835021 5.194164
8.309653 0.345721 0.534616 5.297002
determinant=-1909.979877
Runnning the example:
./nml.sh clean examples && examples/determinant.ex
Solve linear systems of equations
Solving A * x = B
where A is lower triangular (Forward Substitution)
Use: nml_mat *nml_ls_solvefwd(nml_mat *low_triang, nml_mat *b)
.
Note: no validation will be performed to check is low_triang
is a lower triangular matrix
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
FILE *input = fopen("./examples/data/matrix9_lower_triangular.data", "r");
nml_mat *A = nml_mat_fromfilef(input);
nml_mat *B = nml_mat_fromfilef(input);
nml_mat *x = nml_ls_solvefwd(A, B);
nml_mat_print(A);
nml_mat_print(B);
nml_mat_print(x);
nml_mat_free(A);
nml_mat_free(B);
nml_mat_free(x);
fclose(input);
return 0;
}
To run the example:
./nml.sh clean examples && examples/forward_substition.ex
Solving A * x = B
where A is upper traingular (Backward Substition)
Use: nml_mat *nml_ls_solvebck(nml_mat *upper_triang, nml_mat *b)
.
Note: no validation will be performed to check is upper_triang
is an upper triangular matrix
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
FILE *input = fopen("./examples/data/matrix10_upper_triangular.data", "r");
nml_mat *A = nml_mat_fromfilef(input);
nml_mat *B = nml_mat_fromfilef(input);
nml_mat *x = nml_ls_solvebck(A, B);
nml_mat_print(A);
nml_mat_print(B);
nml_mat_print(x);
nml_mat_free(A);
nml_mat_free(B);
nml_mat_free(x);
fclose(input);
return 0;
}
To run the example:
./nml.sh clean examples && examples/backward_substitution.ex
Solving A * x = B
using LU(P) decomposition
Use: nml_mat *nml_ls_solve(nml_mat_lup *lup, nml_mat* b)
.
#include <stdlib.h>
#include <stdio.h>
#include "lib/nml.h"
int main(int argc, char *argv[]) {
nml_mat *A = nml_mat_sqr_rnd(4, 1.0, 10.0);
nml_mat *B = nml_mat_rnd(4, 1, 1.0, 10.0);
nml_mat_lup *LUP = nml_mat_lup_solve(A);
nml_mat *x = nml_ls_solve(LUP, B);
nml_mat_print(x);
nml_mat_free(A);
nml_mat_free(B);
nml_mat_free(x);
nml_mat_lup_free(LUP);
}
To run the example:
./nml.sh clean examples && ./examples/ls_solve.ex