rnnt-speech-recognition icon indicating copy to clipboard operation
rnnt-speech-recognition copied to clipboard

Getting ValueError: Attempt to convert a value (PerReplica ..) when starting training

Open stefan-falk opened this issue 4 years ago • 6 comments

Hi!

I am currently trying to start a simple training by following the instructions from the README.md. Everything works up to the point where I want to start the training.

Executing

python run_rnnt.py --mode train --data_dir /home/sfalk/pt/shards/

Throws

ValueError: Attempt to convert a value (PerReplica ..) 
Click to expand full error log
/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/librosa/util/decorators.py:9: NumbaDeprecationWarning: An import was requested from a module that has moved location.
Import requested from: 'numba.decorators', please update to use 'numba.core.decorators' or pin to Numba version 0.48.0. This alias will not be present in Numba version 0.50.0.
  from numba.decorators import jit as optional_jit
/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/librosa/util/decorators.py:9: NumbaDeprecationWarning: An import was requested from a module that has moved location.
Import of 'jit' requested from: 'numba.decorators', please update to use 'numba.core.decorators' or pin to Numba version 0.48.0. This alias will not be present in Numba version 0.50.0.
  from numba.decorators import jit as optional_jit
2020-05-26 09:14:30.736191: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-05-26 09:14:30.748386: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.749173: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:30.749232: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.750058: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 1 with properties: 
pciBusID: 0000:02:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:30.750112: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.750888: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 2 with properties: 
pciBusID: 0000:03:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:30.750927: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.751427: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 3 with properties: 
pciBusID: 0000:05:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:30.751570: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-05-26 09:14:30.752638: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-05-26 09:14:30.753673: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-05-26 09:14:30.753866: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-05-26 09:14:30.754997: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-05-26 09:14:30.755618: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-05-26 09:14:30.757804: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-26 09:14:30.757899: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.759345: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.760097: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.760844: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.761589: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.762328: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.763068: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.763805: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:30.764521: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0, 1, 2, 3
2020-05-26 09:14:30.764770: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2020-05-26 09:14:30.770070: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 4200000000 Hz
2020-05-26 09:14:30.770492: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x560e6150fef0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-05-26 09:14:30.770507: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
2020-05-26 09:14:31.020514: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.037961: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.041811: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.049635: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.050189: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x560e60e72d20 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-05-26 09:14:31.050199: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1
2020-05-26 09:14:31.050203: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (1): GeForce GTX 1080 Ti, Compute Capability 6.1
2020-05-26 09:14:31.050206: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (2): GeForce GTX 1080 Ti, Compute Capability 6.1
2020-05-26 09:14:31.050209: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (3): GeForce GTX 1080 Ti, Compute Capability 6.1
2020-05-26 09:14:31.051527: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.051949: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:31.051989: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.052409: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 1 with properties: 
pciBusID: 0000:02:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:31.052448: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.052867: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 2 with properties: 
pciBusID: 0000:03:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:31.052904: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.053326: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 3 with properties: 
pciBusID: 0000:05:00.0 name: GeForce GTX 1080 Ti computeCapability: 6.1
coreClock: 1.582GHz coreCount: 28 deviceMemorySize: 10.92GiB deviceMemoryBandwidth: 451.17GiB/s
2020-05-26 09:14:31.053353: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-05-26 09:14:31.053366: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-05-26 09:14:31.053377: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-05-26 09:14:31.053387: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-05-26 09:14:31.053397: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-05-26 09:14:31.053407: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-05-26 09:14:31.053418: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-05-26 09:14:31.053452: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.053895: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.054339: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.054782: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.055227: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.055669: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.056126: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.056579: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.057003: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0, 1, 2, 3
2020-05-26 09:14:31.057025: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-05-26 09:14:31.059325: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-05-26 09:14:31.059335: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]      0 1 2 3 
2020-05-26 09:14:31.059340: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0:   N Y Y Y 
2020-05-26 09:14:31.059344: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 1:   Y N Y Y 
2020-05-26 09:14:31.059347: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 2:   Y Y N Y 
2020-05-26 09:14:31.059350: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 3:   Y Y Y N 
2020-05-26 09:14:31.060102: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.060567: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.061033: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.061486: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.061942: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.062368: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9449 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
2020-05-26 09:14:31.062688: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.063131: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10161 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1)
2020-05-26 09:14:31.063473: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.064690: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 10161 MB memory) -> physical GPU (device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0, compute capability: 6.1)
2020-05-26 09:14:31.065011: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-05-26 09:14:31.065455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 10161 MB memory) -> physical GPU (device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:05:00.0, compute capability: 6.1)
4 Physical GPU, 4 Logical GPUs
WARNING:tensorflow:From /home/sfalk/tmp/rnnt-speech-recognition/model.py:59: LSTMCell.__init__ (from tensorflow.python.ops.rnn_cell_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This class is equivalent as tf.keras.layers.LSTMCell, and will be replaced by that in Tensorflow 2.0.
W0526 09:14:32.108052 140106746382080 deprecation.py:317] From /home/sfalk/tmp/rnnt-speech-recognition/model.py:59: LSTMCell.__init__ (from tensorflow.python.ops.rnn_cell_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This class is equivalent as tf.keras.layers.LSTMCell, and will be replaced by that in Tensorflow 2.0.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c9e97d820>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.108385 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c9e97d820>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:From /home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/ops/rnn_cell_impl.py:962: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
W0526 09:14:32.109819 140106746382080 deprecation.py:317] From /home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/ops/rnn_cell_impl.py:962: Layer.add_variable (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c9009e730>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.227335 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c9009e730>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c4811f9d0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.490125 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c4811f9d0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c48086070>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.669947 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c48086070>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c383bc4f0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.804272 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c383bc4f0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c383a7d00>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:32.951039 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c383a7d00>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c3830e190>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:33.074690 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c3830e190>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c382f8250>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:33.202479 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c382f8250>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c381bd820>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:33.890956 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c381bd820>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c086b71f0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
W0526 09:14:34.015121 140106746382080 rnn_cell_impl.py:909] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f6c086b71f0>: Note that this cell is not optimized for performance. Please use tf.contrib.cudnn_rnn.CudnnLSTM for better performance on GPU.
I0526 09:14:34.344151 140106746382080 run_rnnt.py:490] Using word-piece encoder with vocab size: 4341
Model: "encoder"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, None, 240)]       0         
_________________________________________________________________
batch_normalization (BatchNo (None, None, 240)         960       
_________________________________________________________________
rnn (RNN)                    (None, None, 640)         8527872   
_________________________________________________________________
dropout (Dropout)            (None, None, 640)         0         
_________________________________________________________________
layer_normalization (LayerNo (None, None, 640)         1280      
_________________________________________________________________
rnn_1 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_1 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_1 (Layer (None, None, 640)         1280      
_________________________________________________________________
time_reduction (TimeReductio (None, None, 1280)        0         
_________________________________________________________________
rnn_2 (RNN)                  (None, None, 640)         17047552  
_________________________________________________________________
dropout_2 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_2 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_3 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_3 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_3 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_4 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_4 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_4 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_5 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_5 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_5 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_6 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_6 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_6 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_7 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_7 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_7 (Layer (None, None, 640)         1280      
=================================================================
Total params: 96,414,656
Trainable params: 96,414,176
Non-trainable params: 480
_________________________________________________________________
Model: "prediction_network"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         [(None, None)]            0         
_________________________________________________________________
embedding (Embedding)        (None, None, 500)         2170500   
_________________________________________________________________
rnn_8 (RNN)                  (None, None, 640)         10657792  
_________________________________________________________________
dropout_8 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_8 (Layer (None, None, 640)         1280      
_________________________________________________________________
rnn_9 (RNN)                  (None, None, 640)         11804672  
_________________________________________________________________
dropout_9 (Dropout)          (None, None, 640)         0         
_________________________________________________________________
layer_normalization_9 (Layer (None, None, 640)         1280      
=================================================================
Total params: 24,635,524
Trainable params: 24,635,524
Non-trainable params: 0
_________________________________________________________________
Model: "transducer"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
mel_specs (InputLayer)          [(None, None, 240)]  0                                            
__________________________________________________________________________________________________
pred_inp (InputLayer)           [(None, None)]       0                                            
__________________________________________________________________________________________________
encoder (Model)                 (None, None, 640)    96414656    mel_specs[0][0]                  
__________________________________________________________________________________________________
prediction_network (Model)      (None, None, 640)    24635524    pred_inp[0][0]                   
__________________________________________________________________________________________________
tf_op_layer_ExpandDims (TensorF [(None, None, 1, 640 0           encoder[1][0]                    
__________________________________________________________________________________________________
tf_op_layer_ExpandDims_1 (Tenso [(None, 1, None, 640 0           prediction_network[1][0]         
__________________________________________________________________________________________________
tf_op_layer_AddV2 (TensorFlowOp [(None, None, None,  0           tf_op_layer_ExpandDims[0][0]     
                                                                 tf_op_layer_ExpandDims_1[0][0]   
__________________________________________________________________________________________________
dense (Dense)                   (None, None, None, 6 410240      tf_op_layer_AddV2[0][0]          
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, None, None, 4 2782581     dense[0][0]                      
==================================================================================================
Total params: 124,243,001
Trainable params: 124,242,521
Non-trainable params: 480
__________________________________________________________________________________________________
Starting training.
Performing evaluation.
Traceback (most recent call last):
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 2292, in _convert_inputs_to_signature
    flatten_inputs[index] = ops.convert_to_tensor(
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/framework/ops.py", line 1341, in convert_to_tensor
    ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/framework/constant_op.py", line 321, in _constant_tensor_conversion_function
    return constant(v, dtype=dtype, name=name)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/framework/constant_op.py", line 261, in constant
    return _constant_impl(value, dtype, shape, name, verify_shape=False,
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/framework/constant_op.py", line 270, in _constant_impl
    t = convert_to_eager_tensor(value, ctx, dtype)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/framework/constant_op.py", line 96, in convert_to_eager_tensor
    return ops.EagerTensor(value, ctx.device_name, dtype)
ValueError: Attempt to convert a value (PerReplica:{
  0: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-9.8887777e+00, -9.5391264e+00, -9.2146311e+00, ...,
          1.4807711e+00,  1.4137149e+00,  1.5833356e+00],
        [-2.5297828e+00, -1.0314496e+00, -4.4551528e-01, ...,
         -8.5550594e-01, -3.8671780e-01, -6.2595654e-01],
        [-9.2890608e-01, -9.3925929e-01, -1.0737282e+00, ...,
         -4.6040058e-01, -1.3226795e-01, -4.6705770e-01],
        ...,
        [-8.9524627e-02, -1.3095784e-01,  4.4763446e-02, ...,
         -7.6179504e-03,  3.1356859e-01,  1.3805485e-01],
        [-1.0855615e-01, -3.6668968e-01, -3.5269606e-01, ...,
         -1.6952515e-01, -4.3339968e-01, -2.3297167e-01],
        [-3.4607446e-01, -4.6576285e-01, -2.4114418e-01, ...,
         -3.9931583e-01, -6.5470409e-01, -5.9117317e-02]],

       [[-1.0188073e+01, -9.7674351e+00, -9.2495003e+00, ...,
          2.7845190e+00,  3.0497322e+00,  2.9723659e+00],
        [-5.8545446e-01, -9.0612173e-01, -1.4650891e+00, ...,
         -1.2318707e+00, -1.2984281e+00, -1.2217040e+00],
        [-4.9245834e-01, -6.1498523e-01, -9.3534470e-01, ...,
         -1.1765385e+00, -1.4464822e+00, -6.3945484e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.7931051e+00, -9.2576466e+00, -8.7187033e+00, ...,
          2.6441813e+00,  2.5935564e+00,  2.7019000e+00],
        [-1.1656429e+00, -2.4396741e-01,  2.2748601e-01, ...,
         -1.1423826e+00, -1.9891844e+00, -1.8549285e+00],
        [-1.1924456e+00, -1.5766211e+00, -1.9995271e+00, ...,
         -6.9014835e-01, -1.1843119e+00, -1.7883348e+00],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       ...,

       [[-9.2142944e+00, -8.7442112e+00, -8.0906887e+00, ...,
          2.5637565e+00,  2.6928663e+00,  2.9714472e+00],
        [-1.4353551e+00, -1.3912488e+00, -1.1410775e+00, ...,
         -6.8289948e-01, -7.4661875e-01, -9.4346857e-01],
        [-1.3514730e+00, -1.3447710e+00, -1.1697345e+00, ...,
         -8.4204197e-01, -6.4308357e-01, -6.6116714e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.4380770e+00, -9.2610064e+00, -9.3578424e+00, ...,
          1.3151474e+00,  1.3194189e+00,  1.6185846e+00],
        [-1.4748455e+00, -9.6358955e-01, -7.5807011e-01, ...,
         -1.2112403e+00, -5.9023190e-01, -2.0361996e-01],
        [-1.2093054e+00, -1.8930241e+00, -1.3843757e+00, ...,
         -3.7091255e-01, -6.0484600e-01, -1.9562192e+00],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.2918978e+00, -9.2315750e+00, -8.9223146e+00, ...,
          2.7278879e+00,  2.8609688e+00,  2.7423246e+00],
        [-5.9187198e-01, -1.8667960e-01,  2.1728778e-01, ...,
         -9.7960901e-01, -2.1147966e-01, -8.8720083e-01],
        [-8.6280262e-01, -8.0901504e-01, -5.0346565e-01, ...,
         -7.1112490e-01, -1.2980080e-01,  3.8867188e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]]], dtype=float32)>,
  1: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-10.0592985 ,  -9.730883  ,  -9.271258  , ...,   2.8219585 ,
           2.6701574 ,   3.145619  ],
        [ -0.9512273 ,  -0.57793355,  -0.37342393, ...,  -0.36957645,
          -0.58688927,  -0.6034956 ],
        [ -1.0401095 ,  -1.0510697 ,  -1.1356157 , ...,  -0.2553835 ,
          -0.40022898,  -1.2278776 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.3389225 ,  -9.18263   ,  -8.9984045 , ...,   2.095945  ,
           2.1119766 ,   2.3430693 ],
        [ -0.9921645 ,  -0.9324732 ,  -0.67674816, ...,  -0.8709469 ,
          -0.87235546,  -0.8106818 ],
        [ -2.0774326 ,  -2.127688  ,  -1.135358  , ...,  -0.97692585,
          -1.1275706 ,  -0.88771343],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-10.804321  , -10.686319  , -10.408899  , ...,   2.3665676 ,
           2.5379932 ,   2.420307  ],
        [ -1.1987064 ,  -1.067873  ,  -0.9529356 , ...,  -0.30030394,
          -0.12877178,  -0.16108751],
        [ -0.45661426,  -0.7980306 ,  -1.1557912 , ...,  -1.5581841 ,
          -0.4684105 ,  -0.44000912],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[ -9.445232  ,  -9.460578  ,  -9.285489  , ...,   1.8623145 ,
           1.9304647 ,   2.195097  ],
        [ -1.0719146 ,  -1.0908513 ,  -0.9582559 , ...,  -0.99088955,
          -0.6627326 ,  -0.6685376 ],
        [ -1.8296288 ,  -1.8624439 ,  -1.321793  , ...,  -0.70586205,
          -0.97963333,  -1.346128  ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.328621  ,  -9.586381  ,  -9.817234  , ...,   3.6245484 ,
           3.8879015 ,   3.8824553 ],
        [ -2.2337832 ,  -1.1850247 ,  -0.43120062, ...,  -1.3237286 ,
          -0.8165655 ,  -0.5502229 ],
        [ -4.9042144 ,  -1.1433594 ,  -0.3725183 , ...,   0.19899416,
           0.02039671,   0.09885693],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.299686  ,  -8.799611  ,  -8.434992  , ...,   3.097272  ,
           3.1601548 ,   3.1777468 ],
        [ -1.1876402 ,  -1.0250216 ,  -0.64193165, ...,  -0.32103252,
          -0.06696558,  -0.6231766 ],
        [ -0.5330059 ,  -0.6796452 ,  -0.77790976, ...,  -0.9301033 ,
          -0.8343253 ,  -0.95349455],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>,
  2: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-10.20004   ,  -9.797416  ,  -9.144037  , ...,   2.1522975 ,
           2.177644  ,   2.4891276 ],
        [ -0.6829766 ,  -1.0327927 ,  -1.9740211 , ...,  -1.109499  ,
          -1.2662077 ,  -1.4992175 ],
        [ -0.50412035,  -0.75838935,  -1.4640208 , ...,  -1.1935134 ,
          -1.90482   ,  -1.4951177 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.057947  ,  -8.835877  ,  -8.432611  , ...,   2.7456422 ,
           2.6064804 ,   2.9408405 ],
        [ -0.7960679 ,  -0.7536596 ,  -0.56650114, ...,  -0.9725952 ,
          -0.9330125 ,  -0.8314767 ],
        [ -1.273035  ,  -1.0706124 ,  -0.8415742 , ...,  -1.0601668 ,
          -1.3329258 ,  -2.0243492 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -8.598597  ,  -8.078391  ,  -7.316219  , ...,   3.475574  ,
           3.5632377 ,   3.4421172 ],
        [ -0.15228844,   0.27448   ,   0.84499   , ...,  -1.2552052 ,
          -0.435256  ,  -0.70891285],
        [ -0.08234251,  -0.10229468,  -0.20772624, ...,   0.49269104,
          -0.33324862,  -0.30197382],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[-10.674739  , -10.312547  ,  -9.784449  , ...,   1.9142385 ,
           2.0289752 ,   2.207048  ],
        [ -2.3002534 ,  -1.4031292 ,  -0.7912599 , ...,   0.46009445,
           0.26866436,   0.23870277],
        [ -0.8622447 ,  -0.8987092 ,  -0.7318269 , ...,  -0.51101494,
           0.02473354,   0.04263115],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-11.913138  , -11.890651  , -11.718769  , ...,  -0.6516266 ,
          -0.11420345,  -0.2889433 ],
        [ -2.3279111 ,  -0.83327794,  -0.38966238, ...,  -0.18499136,
          -0.31412745,  -0.78526115],
        [ -1.2105832 ,  -0.65170074,  -0.30061066, ...,  -0.5946727 ,
          -0.5343251 ,  -0.26280165],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.108984  ,  -8.4880495 ,  -7.7428994 , ...,   3.0713623 ,
           3.0152838 ,   3.4003892 ],
        [ -0.19017792,  -0.29030776,  -0.33207464, ...,  -0.0172677 ,
          -0.24603939,  -0.9277673 ],
        [ -0.6175966 ,  -0.8139999 ,  -1.1248744 , ...,  -0.649323  ,
          -0.6167655 ,  -0.5438595 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>,
  3: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[ -8.988267  ,  -8.965929  ,  -8.728106  , ...,   2.1489723 ,
           2.334958  ,   2.5260453 ],
        [ -0.9514227 ,  -0.8912209 ,  -0.42839706, ...,  -0.7747984 ,
          -0.88131857,  -1.1858144 ],
        [ -1.6392798 ,  -1.8752912 ,  -1.3590232 , ...,  -0.71193075,
          -0.46426392,  -0.79004574],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.117433  ,  -8.756327  ,  -8.3021965 , ...,   2.6770406 ,
           2.9165506 ,   2.619464  ],
        [ -0.8334371 ,  -0.83099353,  -0.7541424 , ...,  -1.08567   ,
          -0.3741293 ,  -0.14404964],
        [ -1.1120342 ,  -1.2024816 ,  -1.1394764 , ...,  -1.3766332 ,
          -1.0821438 ,  -0.808341  ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -8.535436  ,  -8.446434  ,  -8.433824  , ...,   1.7634034 ,
           1.9151568 ,   2.234317  ],
        [ -0.73761785,  -1.0498412 ,  -1.1566993 , ...,  -1.9087753 ,
          -1.4135947 ,  -0.43615532],
        [ -3.1867118 ,  -1.3442845 ,  -0.6116022 , ...,  -1.2935882 ,
          -1.5357218 ,  -1.4339061 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[ -8.752668  ,  -8.795702  ,  -9.234339  , ...,   1.4543443 ,
           1.308625  ,   1.8872037 ],
        [ -0.8426125 ,  -0.5590738 ,  -0.64102423, ...,  -0.2699995 ,
          -0.34920692,  -0.23712015],
        [ -0.49331522,  -1.201171  ,  -1.1223062 , ...,  -1.4179659 ,
          -0.8049512 ,  -0.8301816 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.640016  ,  -9.385439  ,  -9.126853  , ...,   2.6549459 ,
           2.8241823 ,   3.1816008 ],
        [ -1.9176644 ,  -1.4502705 ,  -0.9663389 , ...,  -0.6905961 ,
          -0.6539016 ,  -0.5099206 ],
        [ -1.4909953 ,  -1.6704174 ,  -1.1156216 , ...,  -1.4263935 ,
          -0.81988144,  -1.1464152 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-11.273719  , -10.959808  , -10.497703  , ...,   1.7455099 ,
           1.9854834 ,   2.464494  ],
        [ -2.0011683 ,  -1.4769925 ,  -0.9517286 , ...,  -0.25176716,
          -0.5848155 ,  -0.5404253 ],
        [ -1.4961203 ,  -1.4866172 ,  -1.359714  , ...,  -1.1029644 ,
          -1.4994144 ,  -0.89810133],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>
}) with an unsupported type (<class 'tensorflow.python.distribute.values.PerReplica'>) to a Tensor.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "run_rnnt.py", line 586, in <module>
    app.run(main)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/absl/app.py", line 299, in run
    _run_main(main, args)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/absl/app.py", line 250, in _run_main
    sys.exit(main(argv))
  File "run_rnnt.py", line 532, in main
    run_training(
  File "run_rnnt.py", line 347, in run_training
    checkpoint_model()
  File "run_rnnt.py", line 304, in checkpoint_model
    eval_loss, eval_metrics_results = run_evaluate(
  File "run_rnnt.py", line 433, in run_evaluate
    loss, metrics_results = eval_step(inputs)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py", line 580, in __call__
    result = self._call(*args, **kwds)
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py", line 647, in _call
    self._stateful_fn._function_spec.canonicalize_function_inputs(  # pylint: disable=protected-access
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 2235, in canonicalize_function_inputs
    inputs = _convert_inputs_to_signature(
  File "/home/sfalk/miniconda3/envs/rnnt/lib/python3.8/site-packages/tensorflow/python/eager/function.py", line 2296, in _convert_inputs_to_signature
    raise ValueError("When input_signature is provided, all inputs to "
ValueError: When input_signature is provided, all inputs to the Python function must be convertible to tensors:
  inputs: (
    (PerReplica:{
  0: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-9.8887777e+00, -9.5391264e+00, -9.2146311e+00, ...,
          1.4807711e+00,  1.4137149e+00,  1.5833356e+00],
        [-2.5297828e+00, -1.0314496e+00, -4.4551528e-01, ...,
         -8.5550594e-01, -3.8671780e-01, -6.2595654e-01],
        [-9.2890608e-01, -9.3925929e-01, -1.0737282e+00, ...,
         -4.6040058e-01, -1.3226795e-01, -4.6705770e-01],
        ...,
        [-8.9524627e-02, -1.3095784e-01,  4.4763446e-02, ...,
         -7.6179504e-03,  3.1356859e-01,  1.3805485e-01],
        [-1.0855615e-01, -3.6668968e-01, -3.5269606e-01, ...,
         -1.6952515e-01, -4.3339968e-01, -2.3297167e-01],
        [-3.4607446e-01, -4.6576285e-01, -2.4114418e-01, ...,
         -3.9931583e-01, -6.5470409e-01, -5.9117317e-02]],

       [[-1.0188073e+01, -9.7674351e+00, -9.2495003e+00, ...,
          2.7845190e+00,  3.0497322e+00,  2.9723659e+00],
        [-5.8545446e-01, -9.0612173e-01, -1.4650891e+00, ...,
         -1.2318707e+00, -1.2984281e+00, -1.2217040e+00],
        [-4.9245834e-01, -6.1498523e-01, -9.3534470e-01, ...,
         -1.1765385e+00, -1.4464822e+00, -6.3945484e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.7931051e+00, -9.2576466e+00, -8.7187033e+00, ...,
          2.6441813e+00,  2.5935564e+00,  2.7019000e+00],
        [-1.1656429e+00, -2.4396741e-01,  2.2748601e-01, ...,
         -1.1423826e+00, -1.9891844e+00, -1.8549285e+00],
        [-1.1924456e+00, -1.5766211e+00, -1.9995271e+00, ...,
         -6.9014835e-01, -1.1843119e+00, -1.7883348e+00],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       ...,

       [[-9.2142944e+00, -8.7442112e+00, -8.0906887e+00, ...,
          2.5637565e+00,  2.6928663e+00,  2.9714472e+00],
        [-1.4353551e+00, -1.3912488e+00, -1.1410775e+00, ...,
         -6.8289948e-01, -7.4661875e-01, -9.4346857e-01],
        [-1.3514730e+00, -1.3447710e+00, -1.1697345e+00, ...,
         -8.4204197e-01, -6.4308357e-01, -6.6116714e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.4380770e+00, -9.2610064e+00, -9.3578424e+00, ...,
          1.3151474e+00,  1.3194189e+00,  1.6185846e+00],
        [-1.4748455e+00, -9.6358955e-01, -7.5807011e-01, ...,
         -1.2112403e+00, -5.9023190e-01, -2.0361996e-01],
        [-1.2093054e+00, -1.8930241e+00, -1.3843757e+00, ...,
         -3.7091255e-01, -6.0484600e-01, -1.9562192e+00],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]],

       [[-9.2918978e+00, -9.2315750e+00, -8.9223146e+00, ...,
          2.7278879e+00,  2.8609688e+00,  2.7423246e+00],
        [-5.9187198e-01, -1.8667960e-01,  2.1728778e-01, ...,
         -9.7960901e-01, -2.1147966e-01, -8.8720083e-01],
        [-8.6280262e-01, -8.0901504e-01, -5.0346565e-01, ...,
         -7.1112490e-01, -1.2980080e-01,  3.8867188e-01],
        ...,
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00],
        [ 0.0000000e+00,  0.0000000e+00,  0.0000000e+00, ...,
          0.0000000e+00,  0.0000000e+00,  0.0000000e+00]]], dtype=float32)>,
  1: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-10.0592985 ,  -9.730883  ,  -9.271258  , ...,   2.8219585 ,
           2.6701574 ,   3.145619  ],
        [ -0.9512273 ,  -0.57793355,  -0.37342393, ...,  -0.36957645,
          -0.58688927,  -0.6034956 ],
        [ -1.0401095 ,  -1.0510697 ,  -1.1356157 , ...,  -0.2553835 ,
          -0.40022898,  -1.2278776 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.3389225 ,  -9.18263   ,  -8.9984045 , ...,   2.095945  ,
           2.1119766 ,   2.3430693 ],
        [ -0.9921645 ,  -0.9324732 ,  -0.67674816, ...,  -0.8709469 ,
          -0.87235546,  -0.8106818 ],
        [ -2.0774326 ,  -2.127688  ,  -1.135358  , ...,  -0.97692585,
          -1.1275706 ,  -0.88771343],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-10.804321  , -10.686319  , -10.408899  , ...,   2.3665676 ,
           2.5379932 ,   2.420307  ],
        [ -1.1987064 ,  -1.067873  ,  -0.9529356 , ...,  -0.30030394,
          -0.12877178,  -0.16108751],
        [ -0.45661426,  -0.7980306 ,  -1.1557912 , ...,  -1.5581841 ,
          -0.4684105 ,  -0.44000912],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[ -9.445232  ,  -9.460578  ,  -9.285489  , ...,   1.8623145 ,
           1.9304647 ,   2.195097  ],
        [ -1.0719146 ,  -1.0908513 ,  -0.9582559 , ...,  -0.99088955,
          -0.6627326 ,  -0.6685376 ],
        [ -1.8296288 ,  -1.8624439 ,  -1.321793  , ...,  -0.70586205,
          -0.97963333,  -1.346128  ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.328621  ,  -9.586381  ,  -9.817234  , ...,   3.6245484 ,
           3.8879015 ,   3.8824553 ],
        [ -2.2337832 ,  -1.1850247 ,  -0.43120062, ...,  -1.3237286 ,
          -0.8165655 ,  -0.5502229 ],
        [ -4.9042144 ,  -1.1433594 ,  -0.3725183 , ...,   0.19899416,
           0.02039671,   0.09885693],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.299686  ,  -8.799611  ,  -8.434992  , ...,   3.097272  ,
           3.1601548 ,   3.1777468 ],
        [ -1.1876402 ,  -1.0250216 ,  -0.64193165, ...,  -0.32103252,
          -0.06696558,  -0.6231766 ],
        [ -0.5330059 ,  -0.6796452 ,  -0.77790976, ...,  -0.9301033 ,
          -0.8343253 ,  -0.95349455],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>,
  2: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[-10.20004   ,  -9.797416  ,  -9.144037  , ...,   2.1522975 ,
           2.177644  ,   2.4891276 ],
        [ -0.6829766 ,  -1.0327927 ,  -1.9740211 , ...,  -1.109499  ,
          -1.2662077 ,  -1.4992175 ],
        [ -0.50412035,  -0.75838935,  -1.4640208 , ...,  -1.1935134 ,
          -1.90482   ,  -1.4951177 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.057947  ,  -8.835877  ,  -8.432611  , ...,   2.7456422 ,
           2.6064804 ,   2.9408405 ],
        [ -0.7960679 ,  -0.7536596 ,  -0.56650114, ...,  -0.9725952 ,
          -0.9330125 ,  -0.8314767 ],
        [ -1.273035  ,  -1.0706124 ,  -0.8415742 , ...,  -1.0601668 ,
          -1.3329258 ,  -2.0243492 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -8.598597  ,  -8.078391  ,  -7.316219  , ...,   3.475574  ,
           3.5632377 ,   3.4421172 ],
        [ -0.15228844,   0.27448   ,   0.84499   , ...,  -1.2552052 ,
          -0.435256  ,  -0.70891285],
        [ -0.08234251,  -0.10229468,  -0.20772624, ...,   0.49269104,
          -0.33324862,  -0.30197382],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[-10.674739  , -10.312547  ,  -9.784449  , ...,   1.9142385 ,
           2.0289752 ,   2.207048  ],
        [ -2.3002534 ,  -1.4031292 ,  -0.7912599 , ...,   0.46009445,
           0.26866436,   0.23870277],
        [ -0.8622447 ,  -0.8987092 ,  -0.7318269 , ...,  -0.51101494,
           0.02473354,   0.04263115],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-11.913138  , -11.890651  , -11.718769  , ...,  -0.6516266 ,
          -0.11420345,  -0.2889433 ],
        [ -2.3279111 ,  -0.83327794,  -0.38966238, ...,  -0.18499136,
          -0.31412745,  -0.78526115],
        [ -1.2105832 ,  -0.65170074,  -0.30061066, ...,  -0.5946727 ,
          -0.5343251 ,  -0.26280165],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.108984  ,  -8.4880495 ,  -7.7428994 , ...,   3.0713623 ,
           3.0152838 ,   3.4003892 ],
        [ -0.19017792,  -0.29030776,  -0.33207464, ...,  -0.0172677 ,
          -0.24603939,  -0.9277673 ],
        [ -0.6175966 ,  -0.8139999 ,  -1.1248744 , ...,  -0.649323  ,
          -0.6167655 ,  -0.5438595 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>,
  3: <tf.Tensor: shape=(8, 267, 240), dtype=float32, numpy=
array([[[ -8.988267  ,  -8.965929  ,  -8.728106  , ...,   2.1489723 ,
           2.334958  ,   2.5260453 ],
        [ -0.9514227 ,  -0.8912209 ,  -0.42839706, ...,  -0.7747984 ,
          -0.88131857,  -1.1858144 ],
        [ -1.6392798 ,  -1.8752912 ,  -1.3590232 , ...,  -0.71193075,
          -0.46426392,  -0.79004574],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.117433  ,  -8.756327  ,  -8.3021965 , ...,   2.6770406 ,
           2.9165506 ,   2.619464  ],
        [ -0.8334371 ,  -0.83099353,  -0.7541424 , ...,  -1.08567   ,
          -0.3741293 ,  -0.14404964],
        [ -1.1120342 ,  -1.2024816 ,  -1.1394764 , ...,  -1.3766332 ,
          -1.0821438 ,  -0.808341  ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -8.535436  ,  -8.446434  ,  -8.433824  , ...,   1.7634034 ,
           1.9151568 ,   2.234317  ],
        [ -0.73761785,  -1.0498412 ,  -1.1566993 , ...,  -1.9087753 ,
          -1.4135947 ,  -0.43615532],
        [ -3.1867118 ,  -1.3442845 ,  -0.6116022 , ...,  -1.2935882 ,
          -1.5357218 ,  -1.4339061 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       ...,

       [[ -8.752668  ,  -8.795702  ,  -9.234339  , ...,   1.4543443 ,
           1.308625  ,   1.8872037 ],
        [ -0.8426125 ,  -0.5590738 ,  -0.64102423, ...,  -0.2699995 ,
          -0.34920692,  -0.23712015],
        [ -0.49331522,  -1.201171  ,  -1.1223062 , ...,  -1.4179659 ,
          -0.8049512 ,  -0.8301816 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[ -9.640016  ,  -9.385439  ,  -9.126853  , ...,   2.6549459 ,
           2.8241823 ,   3.1816008 ],
        [ -1.9176644 ,  -1.4502705 ,  -0.9663389 , ...,  -0.6905961 ,
          -0.6539016 ,  -0.5099206 ],
        [ -1.4909953 ,  -1.6704174 ,  -1.1156216 , ...,  -1.4263935 ,
          -0.81988144,  -1.1464152 ],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]],

       [[-11.273719  , -10.959808  , -10.497703  , ...,   1.7455099 ,
           1.9854834 ,   2.464494  ],
        [ -2.0011683 ,  -1.4769925 ,  -0.9517286 , ...,  -0.25176716,
          -0.5848155 ,  -0.5404253 ],
        [ -1.4961203 ,  -1.4866172 ,  -1.359714  , ...,  -1.1029644 ,
          -1.4994144 ,  -0.89810133],
        ...,
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ],
        [  0.        ,   0.        ,   0.        , ...,   0.        ,
           0.        ,   0.        ]]], dtype=float32)>
}, PerReplica:{
  0: <tf.Tensor: shape=(8, 19), dtype=int32, numpy=
array([[   0,  500,    7, 1030, 2607,   29,  108, 2559, 4196, 4131,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   70,   75, 2098,   14, 1025,  228,   26, 1178,    8,    5,
        3233, 4131,    0,    0,    0,    0,    0,    0],
       [   0,   12, 1849, 4117, 3926,  156,   64,   10,  932,   29,  108,
         302, 4131,    0,    0,    0,    0,    0,    0],
       [   0,    1, 3220, 4196, 4130, 2585, 1846,    1,  418,   45,   10,
         164, 4131,    0,    0,    0,    0,    0,    0],
       [   0,    1,  426,   56,  215, 1333,  173,  304, 4131,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,  108, 2186,  290,  600,   22,  931,  266,  631,   56,   42,
        2335, 4199, 4131,    0,    0,    0,    0,    0],
       [   0,   23, 2684,  121,    5,   88, 4185, 2864,   99,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,    4,  486,  471,   12,    5,   69,   30, 1286,   26,  495,
         397,  332,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  1: <tf.Tensor: shape=(8, 19), dtype=int32, numpy=
array([[   0,   20,  701,   16, 2598,  442,   20,  502, 2628,  494, 1363,
        1566,    0,    0,    0,    0,    0,    0,    0],
       [   0,  399,   26,  356,   52, 2941, 4131,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,    1,  575, 1465, 4117, 3062, 4130,   25,   22, 2190, 2940,
        4193, 4131,    0,    0,    0,    0,    0,    0],
       [   0,    9,   97, 3737,   17,   59, 3619,  474, 1846, 4196, 4131,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   84, 1332,  177, 3837, 4117,  939, 1316, 4200, 4131,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,    3,  123, 2750, 4117,    3, 1462, 4117,   27,    5,  875,
        4131,    0,    0,    0,    0,    0,    0,    0],
       [   0, 3019, 1525, 4007,  592,  664,   16,  289,   11,   51, 4028,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0, 2321, 4117,   25,   59, 1002,   18,  365,  150,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  2: <tf.Tensor: shape=(8, 19), dtype=int32, numpy=
array([[   0,  143,   12,  108,  539,    7,   34,   67,   25, 2746, 4148,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,    9, 2373,  195,  496,  190,    4, 3921,   74, 2677, 1078,
          45,    1,  532,   19,   23,  140, 4131,    0],
       [   0,   23,   18, 4026,  456, 2204,   15,   17,   35,  831,  470,
         524,    0,    0,    0,    0,    0,    0,    0],
       [   0,    5,  512,    2,   36,   18,  724,   21,   20,  688, 4131,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   78,   68,   36,   89,   20,  157, 1279, 1855, 1910,  611,
         528,  747,    8,  139, 2423, 4200, 4131,    0],
       [   0,    3,   28,   12,    3,  582, 4131,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   92, 2640,  186,    4, 1235,   10, 1718,  459, 4131,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,  614, 1674, 2151,  492,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  3: <tf.Tensor: shape=(8, 19), dtype=int32, numpy=
array([[   0, 1044, 4130,   25,    1, 2312,  269, 1781, 4117,   21,  191,
        4079, 4131,    0,    0,    0,    0,    0,    0],
       [   0,   35, 2797, 4117, 1290, 4196, 4130, 1517,  737,   12, 1411,
        2873, 4182, 4131,    0,    0,    0,    0,    0],
       [   0,   49,  641, 1525, 3145,   15,   25,   23,  411, 1628,  403,
        4131,    0,    0,    0,    0,    0,    0,    0],
       [   0,    9, 2824,  335,  646,   25,   13, 3178,  633, 2679,   29,
           5,  916,   34, 1558,  181, 4182, 4131,    0],
       [   0,   92,  112, 4025, 4182, 4118,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   37,  273,  280, 1296,   19,   23,  140, 4131,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0],
       [   0,   26, 3288,   15,  493, 1239, 1424,  117,   37,    5,  517,
         266,  138, 4131,    0,    0,    0,    0,    0],
       [   0,  932,   29,    1, 1383,  416, 4117,   12,    4, 1620, 1170,
        1737,  420, 1138, 4117,    2,    5, 1785, 4131]], dtype=int32)>
}, PerReplica:{
  0: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([267, 225, 193, 132, 140, 159, 105, 137], dtype=int32)>,
  1: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([166, 126, 146, 132, 135, 180, 184, 163], dtype=int32)>,
  2: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([137, 239, 157, 172, 201, 112, 127, 124], dtype=int32)>,
  3: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([200, 174, 151, 185, 165, 176, 204, 209], dtype=int32)>
}, PerReplica:{
  0: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([ 9, 12, 12, 12,  8, 13,  8, 12], dtype=int32)>,
  1: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([11,  6, 12, 10,  9, 11, 10,  8], dtype=int32)>,
  2: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([10, 17, 11, 10, 17,  6,  9,  4], dtype=int32)>,
  3: <tf.Tensor: shape=(8,), dtype=int32, numpy=array([12, 13, 11, 17,  5,  8, 13, 18], dtype=int32)>
}, PerReplica:{
  0: <tf.Tensor: shape=(8, 18), dtype=int32, numpy=
array([[ 500,    7, 1030, 2607,   29,  108, 2559, 4196, 4131,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  70,   75, 2098,   14, 1025,  228,   26, 1178,    8,    5, 3233,
        4131,    0,    0,    0,    0,    0,    0],
       [  12, 1849, 4117, 3926,  156,   64,   10,  932,   29,  108,  302,
        4131,    0,    0,    0,    0,    0,    0],
       [   1, 3220, 4196, 4130, 2585, 1846,    1,  418,   45,   10,  164,
        4131,    0,    0,    0,    0,    0,    0],
       [   1,  426,   56,  215, 1333,  173,  304, 4131,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [ 108, 2186,  290,  600,   22,  931,  266,  631,   56,   42, 2335,
        4199, 4131,    0,    0,    0,    0,    0],
       [  23, 2684,  121,    5,   88, 4185, 2864,   99,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [   4,  486,  471,   12,    5,   69,   30, 1286,   26,  495,  397,
         332,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  1: <tf.Tensor: shape=(8, 18), dtype=int32, numpy=
array([[  20,  701,   16, 2598,  442,   20,  502, 2628,  494, 1363, 1566,
           0,    0,    0,    0,    0,    0,    0],
       [ 399,   26,  356,   52, 2941, 4131,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [   1,  575, 1465, 4117, 3062, 4130,   25,   22, 2190, 2940, 4193,
        4131,    0,    0,    0,    0,    0,    0],
       [   9,   97, 3737,   17,   59, 3619,  474, 1846, 4196, 4131,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  84, 1332,  177, 3837, 4117,  939, 1316, 4200, 4131,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [   3,  123, 2750, 4117,    3, 1462, 4117,   27,    5,  875, 4131,
           0,    0,    0,    0,    0,    0,    0],
       [3019, 1525, 4007,  592,  664,   16,  289,   11,   51, 4028,    0,
           0,    0,    0,    0,    0,    0,    0],
       [2321, 4117,   25,   59, 1002,   18,  365,  150,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  2: <tf.Tensor: shape=(8, 18), dtype=int32, numpy=
array([[ 143,   12,  108,  539,    7,   34,   67,   25, 2746, 4148,    0,
           0,    0,    0,    0,    0,    0,    0],
       [   9, 2373,  195,  496,  190,    4, 3921,   74, 2677, 1078,   45,
           1,  532,   19,   23,  140, 4131,    0],
       [  23,   18, 4026,  456, 2204,   15,   17,   35,  831,  470,  524,
           0,    0,    0,    0,    0,    0,    0],
       [   5,  512,    2,   36,   18,  724,   21,   20,  688, 4131,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  78,   68,   36,   89,   20,  157, 1279, 1855, 1910,  611,  528,
         747,    8,  139, 2423, 4200, 4131,    0],
       [   3,   28,   12,    3,  582, 4131,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  92, 2640,  186,    4, 1235,   10, 1718,  459, 4131,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [ 614, 1674, 2151,  492,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0]], dtype=int32)>,
  3: <tf.Tensor: shape=(8, 18), dtype=int32, numpy=
array([[1044, 4130,   25,    1, 2312,  269, 1781, 4117,   21,  191, 4079,
        4131,    0,    0,    0,    0,    0,    0],
       [  35, 2797, 4117, 1290, 4196, 4130, 1517,  737,   12, 1411, 2873,
        4182, 4131,    0,    0,    0,    0,    0],
       [  49,  641, 1525, 3145,   15,   25,   23,  411, 1628,  403, 4131,
           0,    0,    0,    0,    0,    0,    0],
       [   9, 2824,  335,  646,   25,   13, 3178,  633, 2679,   29,    5,
         916,   34, 1558,  181, 4182, 4131,    0],
       [  92,  112, 4025, 4182, 4118,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  37,  273,  280, 1296,   19,   23,  140, 4131,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0],
       [  26, 3288,   15,  493, 1239, 1424,  117,   37,    5,  517,  266,
         138, 4131,    0,    0,    0,    0,    0],
       [ 932,   29,    1, 1383,  416, 4117,   12,    4, 1620, 1170, 1737,
         420, 1138, 4117,    2,    5, 1785, 4131]], dtype=int32)>
}))
  input_signature: (
    [TensorSpec(shape=(None, None, 240), dtype=tf.float32, name=None), TensorSpec(shape=(None, None), dtype=tf.int32, name=None), TensorSpec(shape=(None,), dtype=tf.int32, name=None), TensorSpec(shape=(None,), dtype=tf.int32, name=None), TensorSpec(shape=(None, None), dtype=tf.int32, name=None)])

Any idea what could be the issue here?

I have the following setup:

$ pip freeze | grep tensor
tensorboard==2.2.1
tensorboard-plugin-wit==1.6.0.post3
tensorflow-datasets==3.1.0
tensorflow-estimator==2.2.0
tensorflow-gpu==2.2.0
tensorflow-metadata==0.22.0
warprnnt-tensorflow==0.1

I noticed that FLAGS.gpus is None which leads to MirroredStrategy(devices=gpu_names) where gpu_names is None. I am not sure if this has something to do with the issue.

stefan-falk avatar May 26 '20 07:05 stefan-falk

@stefan-falk Were you able to resolve this issue?

prajwaljpj avatar May 26 '20 11:05 prajwaljpj

Using only one GPU resolves this issue (see https://github.com/noahchalifour/rnnt-speech-recognition/issues/18#issuecomment-633862788). But I wouldn't call it "resolved" yet.

stefan-falk avatar May 26 '20 12:05 stefan-falk

same error

BuaaAlban avatar May 29 '20 11:05 BuaaAlban

@BuaaAlban @prajwaljpj Were you able to run it on multiple GPUs yet?

stefan-falk avatar Jun 23 '20 10:06 stefan-falk

@BuaaAlban @prajwaljpj Were you able to run it on multiple GPUs yet?

No, and it does't converge

BuaaAlban avatar Jun 24 '20 01:06 BuaaAlban

I'm able to run it on 8 v100 GPU in single instance, using TF2.2.0 according to https://github.com/tensorflow/tensorflow/issues/29911 .

The problem now is that it does't converge, the Loss is around 100 after 40 epochs, the batch size is 64, training data is common_voice_data/cv-corpus-6.1-2020-12-11_zh-CN.

Chen188 avatar May 18 '21 03:05 Chen188