MTGNN
MTGNN copied to clipboard
关于“normalization”
代码中关于normalization的部分如下:
def _normalized(self, normalize):
# normalized by the maximum value of entire matrix.
if (normalize == 0):
self.dat = self.rawdat
if (normalize == 1):
self.dat = self.rawdat / np.max(self.rawdat)
# normlized by the maximum value of each row(sensor).
if (normalize == 2):
for i in range(self.m):
self.scale[i] = np.max(np.abs(self.rawdat[:, i]))
self.dat[:, i] = self.rawdat[:, i] / np.max(np.abs(self.rawdat[:, i]))
默认是=2的情况,对于这个我有疑问
使用所有数据进行归一化是否存在测试集信息泄露的问题?
This looks like a look-ahead bias. When I use the code, I modified this part to use the max value in the training part only, like self.rawdat[:int(train_ratio * self.rawdat.shape[0])]
in np.max
calls.