nndl.github.io
nndl.github.io copied to clipboard
线性无关的定义是错误的
定义错误 + 385页
- [ ] 定义错误:线性无关:线性空间 𝒱 中的 𝑀 个向量 {𝒗1, 𝒗2, ⋯ , 𝒗𝑀}, 如果对任意的一组标量 𝜆1, 𝜆2, ⋯ , 𝜆𝑀, 满足𝜆1𝒗1 + 𝜆2𝒗2 +⋯+ 𝜆𝑀𝒗𝑀 = 0, 则必然 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑀 = 0, 那么{𝒗1, 𝒗2, ⋯ , 𝒗𝑀}是线性无关的, 也称为线性独立的. 如果线性无关是上面的定义,则任意一组向量都是线性无关的,实际上线性无关的定义应该是不存在一组标量使得一组向量形成某种线性关系(或者说这组标量可以使得这组向量之和为0),则说明这一组向量是线性无关的。 另外,老师,我觉得这本书很多地方写的太跳跃了,而且对为什么要这么做的前提说明不充分,目标解释不足,所以读起来还是比较吃力的,直接就带入了太多的专业术语,但是关于这些专业术语的作用,产生背景,介绍的不足,多个专业术语之间联结起来之后产生的结果就更不好理解了
您的邮件已收到,我会尽快回复,谢谢。
您好,我是孟贇祥,您的邮件我已经收到。我会尽快处理麻烦您了。
实际上线性无关的定义应该是 不存在 一组标量使得一组向量形成某种线性关系(或者说这组标量可以 使得这组向量之和为0),则说明这一组向量是线性无关的。
AFAIK, the definition of linear independence in the book is correct. See wiki's definition.
And actually, your argument has a flaw, with $\Lambda=[0,0,\dots,0]$, $\lambda_1\mathbf{v}_1+\lambda_2\mathbf{v}_2+\dots+\lambda_n\mathbf{v}_n=\mathbf{0}$ will always hold for any set of $\mathbf{v}$ s.
不存在一组非全0解
这是来自QQ邮箱的自动回复邮件。 您好,您给我发送的邮件已收到。