mriqc
mriqc copied to clipboard
[BUG] ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
Subject 50818 on ABIDE -- Original data of this subject are already skull-stripped.
Node: workflow_enumerator.anatMRIQCT1w.ComputeIQMs.datasink
Working directory: /scratch/users/oesteban/abide-mriqc_0.9.6-2017-06-03-99db97c9be2e/work/workflow_enumerator/anatMRIQCT1w/ComputeIQMs/_in_file_..mnt..ABIDE..sub-50818..anat..sub-50818_T1w.nii.gz/datasink
Node inputs:
_outputs = {'qi_2': 0.0}
acq_id = <undefined>
ignore_exception = False
metadata = {}
modality = T1w
out_dir = /scratch/users/oesteban/abide-mriqc_0.9.6-2017-06-03-99db97c9be2e/output/derivatives
provenance = {'md5sum': 'bd73296032ac9b5213e4cf41b0df5e54', 'settings': {'testing': False}, 'software': 'mriqc', 'version': '0.9.6', 'warnings': {'large_rot_frame': True, 'small_air_mask': True}}
rec_id = <undefined>
root = {'cjv': 0.2608123444201726, 'cnr': 1.7054842602848836, 'efc': 0.9041243483932278, 'fber': 24.444971084594727, 'fwhm_avg': 3.1803224669591423, 'fwhm_x': 3.1456601874959578, 'fwhm_y': 3.33940721338147, 'fwhm_z': 3.0559, 'icvs_csf': 0.14686643050689055, 'icvs_gm': 0.4930881119376994, 'icvs_wm': 0.36004545755541006, 'inu_med': 0.8618232011795044, 'inu_range': 0.22448201477527618, 'qi_1': nan, 'rpve_csf': 42.623302183537476, 'rpve_gm': 14.851360577727169, 'rpve_wm': 23.315195229783093, 'size_x': 256, 'size_y': 200, 'size_z': 256, 'snr_csf': 0.8715727860599374, 'snr_gm': 7.95122520719356, 'snr_total': 9.748457453611977, 'snr_wm': 20.422574367582435, 'snrd_csf': 0.7270025313469332, 'snrd_gm': 2.079163651534624, 'snrd_total': 2.1670934599330693, 'snrd_wm': 3.6951141969176513, 'spacing_x': 0.9999999403953552, 'spacing_y': 1.0000008344650269, 'spacing_z': 1.0, 'summary_bg_k': 0.0, 'summary_bg_mad': 177.29966127170357, 'summary_bg_mean': 0.0, 'summary_bg_median': 0.0, 'summary_bg_n': 188966.0, 'summary_bg_p05': 0.0, 'summary_bg_p95': 0.0, 'summary_bg_stdv': 241.55155045106886, 'summary_csf_k': 42.32025914971041, 'summary_csf_mad': 156.58950805664062, 'summary_csf_mean': 220.43067932128906, 'summary_csf_median': 196.74880981445312, 'summary_csf_n': 3024.0, 'summary_csf_p05': 29.138742256164548, 'summary_csf_p95': 411.7347946166992, 'summary_csf_stdv': 225.70263671875, 'summary_gm_k': 0.03782641700396283, 'summary_gm_mad': 71.3491439819336, 'summary_gm_mean': 564.5293579101562, 'summary_gm_median': 562.6843872070312, 'summary_gm_n': 36017.0, 'summary_gm_p05': 450.41237182617186, 'summary_gm_p95': 681.23720703125, 'summary_gm_stdv': 70.76602172851562, 'summary_wm_k': 2.9202531574857797, 'summary_wm_mad': 42.710601806640625, 'summary_wm_mean': 1000.9536743164062, 'summary_wm_median': 1000.0093383789062, 'summary_wm_n': 149925.0, 'summary_wm_p05': 924.46025390625, 'summary_wm_p95': 1078.071337890625, 'summary_wm_stdv': 48.96571731567383, 'tpm_overlap_csf': 0.19709305465221405, 'tpm_overlap_gm': 0.5123806595802307, 'tpm_overlap_wm': 0.5198429822921753, 'wm2max': 0.8576228226852947}
run_id = <undefined>
session_id = <undefined>
subject_id = 50818
task_id = None
Traceback (most recent call last):
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/pipeline/plugins/multiproc.py", line 52, in run_node
result['result'] = node.run(updatehash=updatehash)
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 372, in run
self._run_interface()
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 482, in _run_interface
self._result = self._run_command(execute)
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/pipeline/engine/nodes.py", line 613, in _run_command
result = self._interface.run()
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/interfaces/base.py", line 1081, in run
runtime = self._run_wrapper(runtime)
File "/usr/local/miniconda/lib/python3.6/site-packages/nipype/interfaces/base.py", line 1029, in _run_wrapper
runtime = self._run_interface(runtime)
File "/usr/local/miniconda/lib/python3.6/site-packages/mriqc/interfaces/bids.py", line 200, in _run_interface
prov_dict['mriqc_pred'] = int(cvhelper.predict(np.array([features]))[0])
File "/usr/local/miniconda/lib/python3.6/site-packages/mriqc/classifier/cv.py", line 363, in predict
return self.estimator.predict(datapoints).astype(int)
File "/usr/local/miniconda/lib/python3.6/site-packages/sklearn/utils/metaestimators.py", line 54, in <lambda>
out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
File "/usr/local/miniconda/lib/python3.6/site-packages/sklearn/model_selection/_search.py", line 448, in predict
X = check_array(X, dtype=DTYPE, accept_sparse="csr")
File "/usr/local/miniconda/lib/python3.6/site-packages/sklearn/utils/validation.py", line 407, in check_array
_assert_all_finite(array)
File "/usr/local/miniconda/lib/python3.6/site-packages/sklearn/utils/validation.py", line 58, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
Interface IQMFileSink failed to run.
Run into this with ds000001 sub-04.
Does it look like skull-stripped?
Yup! We should handle this more gracefully though.
On Tue, Jun 13, 2017 at 3:16 PM, Oscar Esteban [email protected] wrote:
Does it look like skull-stripped?
— You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/poldracklab/mriqc/issues/546#issuecomment-308264753, or mute the thread https://github.com/notifications/unsubscribe-auth/AAOkpza83wSmkZg68Gt7TGFbLQiiq8roks5sDwoygaJpZM4NwUSa .
Sure, that's why I opened the issue :+1:
But it is good to know that we have a reliable way to find skull-stripped datasets :p
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.
This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.