pixel-recursive-super-resolution icon indicating copy to clipboard operation
pixel-recursive-super-resolution copied to clipboard

Tensorflow implementation of pixel-recursive-super-resolution(Google Brain paper: https://arxiv.org/abs/1702.00783)

Results 14 pixel-recursive-super-resolution issues
Sort by recently updated
recently updated
newest added

Hi @nilboy , I managed to write a code to test the models against my test data (single images or many, based on my need), but the test time per...

What is the next step after training?

What should I do after training ? Please send me the test code.

How can I use the trained model to improve one image's resolution?Please.

I want to load and learn separately the low-resolution image and high-resolution image that I made by myself. Is there any method?

asdsad ![IMG_1205](https://user-images.githubusercontent.com/50347337/57307537-bf733980-70b2-11e9-8f14-0b8e4d85815f.JPG)

非常感谢你的算法!我想用自己的数据进行训练,应该怎么做?

首先非常感谢你提供的源代码! 在代码中有一段和我的理解有些出入,不知道是否我对代码的理解有偏差,请指正: 按照我的理解,左右两边的mask应该如下图所示: ![image](https://user-images.githubusercontent.com/10924189/28962026-40e50b20-78fc-11e7-950b-36f5b4fafb30.png) 但是在代码中[https://github.com/nilboy/pixel-recursive-super-resolution/blob/master/ops.py#L30](https://github.com/nilboy/pixel-recursive-super-resolution/blob/master/ops.py#L30) 对应右边的mask应该是mask A 和 B。这两种mask的区别在于是否包含中心点。可是mask经过 mask C 再判断A 和 B 的话就变成将左边和右边融合到一起了。拿 mask A 举例,它变成了下图: ![image](https://user-images.githubusercontent.com/10924189/28962320-3ffd2962-78fd-11e7-9d8e-844f11eaad4c.png) 请问这个应该怎么解释才通呢? ------- 5 Aug, update ------- 另外还有一个疑惑是在 conditioning_network 里边 ([https://github.com/nilboy/pixel-recursive-super-resolution/blob/master/net.py#L56](https://github.com/nilboy/pixel-recursive-super-resolution/blob/master/net.py#L56)) 原文中是直接连接下一个ResNet...

您好,感謝您提供的程式碼, 我根據您提供的程式在執行上遇到了這些問題,請問應該如何解決? 謝謝您 Not a JPEG file: starts with 0x3d 0x3d Done training -- epoch limit reached Traceback (most recent call last): File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1039, in _do_call return...

As shown in the picture.(click the link below you will get it) [loss curve link](http://116.62.134.81/images/loss.PNG) Is it a bug ?