rife-ncnn-vulkan
rife-ncnn-vulkan copied to clipboard
RIFE, Real-Time Intermediate Flow Estimation for Video Frame Interpolation implemented with ncnn library
I build the latest ncnn on win10, and run extract the cpu-forward code from this github. But when I try to test it with the two images from this github,...
I've written a template python script. ```python import sys import os import re import shutil if len(sys.argv) < 2: print("Usage: python3 start.py ") exit(1) video = sys.argv[1] if not os.path.exists(video):...
It would be awesome if anyone could build on google colab for me! Because I've been getting this error: ``` /content/rife-ncnn-vulkan-20220330-ubuntu/rife-ncnn-vulkan: error while loading shared libraries: libvulkan.so.1: cannot open shared...
Using the same Rife model 2.3, rife-ncnn-vulkan creates outputs not as smooth as rife-cuda. However, rife-cuda has more warping between the frames than rife-ncnn-vulkan. Why is this?
Using `-s` has no effect (RIFE v4). Timestep always defaults to 0.5.
看了一下v4.1的网络结构似乎和v4没区别, 于是尝试转了一下4.1的模型 param用的还是v4的param, 只是更新了权重 附上测试图(由README的Sample Images缩放到448x256进行处理) ncnn-v4.1  ncnn-v4  官方-v4.1  ❤️ 
I tried to utilize the v4 model, but that error causes problems. Only v4 models are missing `contextnet.bin`, `contextnet.param` and `fusionnet.bin`, `fusionnet.param` files. Is this missing a model that is...
Thanks a lot for porting this RIFE to ncnn! I recently tried to use this project on Termux/Android. `rife-ncnn-vulkan` generates black image using GPU while perfect running CPU (`rife-ncnn-vulkan -g...
您好。我用了这个ncnn 的推理框架,在 nvidia-T4上测试发现,它相比于 pytorch 实现的rife, 速度慢了很了。推理时间几乎达到了pytorch 版本的 3-5倍左右。请问这个原因是什么呀?是不是在云上ncnn 的框架相比于pytorch 没有速度优势呢?