rife-ncnn-vulkan icon indicating copy to clipboard operation
rife-ncnn-vulkan copied to clipboard

RIFE, Real-Time Intermediate Flow Estimation for Video Frame Interpolation implemented with ncnn library

Results 48 rife-ncnn-vulkan issues
Sort by recently updated
recently updated
newest added

I build the latest ncnn on win10, and run extract the cpu-forward code from this github. But when I try to test it with the two images from this github,...

I've written a template python script. ```python import sys import os import re import shutil if len(sys.argv) < 2: print("Usage: python3 start.py ") exit(1) video = sys.argv[1] if not os.path.exists(video):...

It would be awesome if anyone could build on google colab for me! Because I've been getting this error: ``` /content/rife-ncnn-vulkan-20220330-ubuntu/rife-ncnn-vulkan: error while loading shared libraries: libvulkan.so.1: cannot open shared...

Using the same Rife model 2.3, rife-ncnn-vulkan creates outputs not as smooth as rife-cuda. However, rife-cuda has more warping between the frames than rife-ncnn-vulkan. Why is this?

Using `-s` has no effect (RIFE v4). Timestep always defaults to 0.5.

看了一下v4.1的网络结构似乎和v4没区别, 于是尝试转了一下4.1的模型 param用的还是v4的param, 只是更新了权重 附上测试图(由README的Sample Images缩放到448x256进行处理) ncnn-v4.1 ![v4 1](https://user-images.githubusercontent.com/18651449/161922176-822607eb-1bed-4890-bf6d-683cb8e8d255.png) ncnn-v4 ![v4](https://user-images.githubusercontent.com/18651449/161922192-0becac16-7dfe-4845-b858-dd750f18f364.png) 官方-v4.1 ![img1](https://user-images.githubusercontent.com/18651449/161922587-e6bee6cb-d44c-470e-a08c-e71b0a1ca9f0.png) ❤️ ![5906EDF1448A35813493CEE9FED6E86C](https://user-images.githubusercontent.com/18651449/161922848-affcfc34-b3a8-45fc-9a9a-288f8539a65f.jpg)

I tried to utilize the v4 model, but that error causes problems. Only v4 models are missing `contextnet.bin`, `contextnet.param` and `fusionnet.bin`, `fusionnet.param` files. Is this missing a model that is...

bug

Thanks a lot for porting this RIFE to ncnn! I recently tried to use this project on Termux/Android. `rife-ncnn-vulkan` generates black image using GPU while perfect running CPU (`rife-ncnn-vulkan -g...

您好。我用了这个ncnn 的推理框架,在 nvidia-T4上测试发现,它相比于 pytorch 实现的rife, 速度慢了很了。推理时间几乎达到了pytorch 版本的 3-5倍左右。请问这个原因是什么呀?是不是在云上ncnn 的框架相比于pytorch 没有速度优势呢?