Kaggle-Jigsaw
Kaggle-Jigsaw copied to clipboard
Kaggle-Jigsaw
Our solution is described in here
Preprocessing
Extract data for BERT/GPT2/XLNET
bash bin/extract_data.sh
Extract features (11 features)
bash bin/extract_features.sh
Create targets
bash bin/extract_target.sh
Train models
seed=17493
depth=12 #11, 12 for Bert base, 23, 24 for Bert large
maxlen=220
batch_size=32
accumulation_steps=4
model_name=bert #gpt2, xlnet
CUDA_VISIBLE_DEVICES=3 python main_catalyst.py train --seed=$seed \
--depth=$depth \
--maxlen=$maxlen \
--batch_size=$batch_size \
--accumulation_steps=$accumulation_steps \
--model_name=$model_name
Predictions
Change the settings as same as training phase. Ex:
seed=17493
depth=12
maxlen=220
batch_size=32
accumulation_steps=4
model_name=bert
Then
python make_submission.py