SNGAN_Projection
SNGAN_Projection copied to clipboard
An unofficial PyTorch implementation of SNGAN (ICLR 2018) and cGANs with projection discriminator (ICLR 2018)
GANs with spectral normalization and projection discriminator
This is an unofficial PyTorch implementation of sngan_projection
Dependencies:
- PyTorch1.0
- numpy
- scipy
- tensorboardX
- tqdm
- torchviz pip install torchviz and graphviz sudo apt-get install graphviz
Usage:
There are two ways to run the training script:
- Run the script directly (We recommend this way):
python3 main.py
orpython main.py
. In this way, the training parameters can be modified by modifying theparameter.py
parameter defaults.
Parameters
Parameters | Function |
---|---|
--version | Experiment name |
--train | Set the model stage, Ture---training stage; False---testing stage |
--experiment_description | Descriptive text for this experiment |
--total_step | Totally training step |
--batch_size | Batch size |
--g_lr | Learning rate of generator |
--d_lr | Learning rate of discriminator |
--parallel | Enable the parallel training |
--dataset | Set the dataset name,lsun,celeb,cifar10 |
--cuda | Set GPU device number |
--image_path | The root dir to training dataset |
--FID_mean_cov | The root dir to dataset moments npz file |
Results
We have reproduced the FID (in Cifar-10, best result is FID=17.2) result reported in the paper.
The convergence curve of FID is as follows:
CIFAR10 results
200K:
500K:
600K:
800K:
1000K: