QAnything
QAnything copied to clipboard
[issue] milvus_client.py的向量库计算相似度(metric_type)的时候为什么选L2?
是否已有关于该错误的issue或讨论? | Is there an existing issue / discussion for this?
- [X] 我已经搜索过已有的issues和讨论 | I have searched the existing issues / discussions
该问题是否在FAQ中有解答? | Is there an existing answer for this in FAQ?
- [X] 我已经搜索过FAQ | I have searched FAQ
当前行为 | Current Behavior
我看到milvus_client.py中的metric_type选了L2,但是我查了一下各种资料,感觉COSINE可能更合适,想请教一下作者是怎么考虑的。
self.search_params = {"metric_type": "L2", "params": {"nprobe": 256}}
期望行为 | Expected Behavior
No response
运行环境 | Environment
- OS:
- NVIDIA Driver:
- CUDA:
- docker:
- docker-compose:
- NVIDIA GPU:
- NVIDIA GPU Memory:
QAnything日志 | QAnything logs
No response
复现方法 | Steps To Reproduce
No response
备注 | Anything else?
No response