gsplat
gsplat copied to clipboard
Function '_RasterizeToPixelsBackward' returned nan values in its 0th output.
trainer.py:203: UserWarning: Anomaly Detection has been enabled. This mode will increase the runtime and should only be enabled for debugging.
with autograd.detect_anomaly():
/.../python3.9/site-packages/torch/autograd/graph.py:769: UserWarning: Error detected in _RasterizeToPixelsBackward. Traceback of forward call that caused the error:
File "trainer.py", line 633, in <module>
cli(main, cfg, verbose=True)
File "/.../python3.9/site-packages/gsplat/distributed.py", line 360, in cli
return _distributed_worker(0, 1, fn=fn, args=args)
File "/.../python3.9/site-packages/gsplat/distributed.py", line 295, in _distributed_worker
fn(local_rank, world_rank, world_size, args)
File "trainer.py", line 591, in main
runner.train()
File "trainer.py", line 219, in train
renders, alphas, info = self.rasterize_splats(
File "trainer.py", line 143, in rasterize_splats
render_colors, render_alphas, info = rasterization(
File "rendering.py", line 561, in rasterization
render_colors_, render_alphas_ = rasterize_to_pixels(
File "/.../python3.9/site-packages/gsplat/cuda/_wrapper.py", line 551, in rasterize_to_pixels
render_colors, render_alphas = _RasterizeToPixels.apply(
File "/.../python3.9/site-packages/torch/autograd/function.py", line 574, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
(Triggered internally at ../torch/csrc/autograd/python_anomaly_mode.cpp:111.)
return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
0%| | 0/30000 [00:00<?, ?it/s]
Traceback (most recent call last):
File "trainer.py", line 633, in <module>
cli(main, cfg, verbose=True)
File "/.../python3.9/site-packages/gsplat/distributed.py", line 360, in cli
return _distributed_worker(0, 1, fn=fn, args=args)
File "/.../python3.9/site-packages/gsplat/distributed.py", line 295, in _distributed_worker
fn(local_rank, world_rank, world_size, args)
File "trainer.py", line 591, in main
runner.train()
File "trainer.py", line 279, in train
loss.backward()
File "/.../python3.9/site-packages/torch/_tensor.py", line 521, in backward
torch.autograd.backward(
File "/.../python3.9/site-packages/torch/autograd/__init__.py", line 289, in backward
_engine_run_backward(
File "/.../python3.9/site-packages/torch/autograd/graph.py", line 769, in _engine_run_backward
return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: Function '_RasterizeToPixelsBackward' returned nan values in its 0th output.
i found scales and opacity have some nan value, so i open torch.autograd.detect_anomaly() context. it reported that some backward errors occur. what should i do to avoid nan values in scales and opacity?
Hi, have you solved this problem?