deeping-flow
deeping-flow copied to clipboard
Deep-learning by using TensorFlow. Basic nns like Logistic, CNN, RNN, LSTM and some examples are implemented by complex model.
Hi, https://github.com/ne7ermore/deeping-flow/blob/master/reinforced-translate/model.py b_words = model.sample(self.prev) s_words, s_props = model.sample(self.prev, False) rewards = self.compute_levenshtein(model.tgt, s_words) baseline = self.compute_levenshtein(model.tgt, b_words) advantage = rewards - baseline 其中的 b-words 和 s-words 都是 Tensor 类型,...
Hi, https://github.com/ne7ermore/deeping-flow/blob/master/reinforced-translate/model.py#L175 mask = pad_mask(model.tgt, EOS, [args.batch_size, args.max_len]) 这里是不是应该是 MC 采样的作为target? 应该是s_words? Thanks
Sorry, I have encountered a UnicodeDecodeError when I run the corpus.py with python3.6. The problem is following: Traceback (most recent call last): File "corpus.py", line 136, in Corpus() File "corpus.py",...
https://github.com/ne7ermore/deeping-flow/blob/433296c0a2cd1ebd6db8524aa9d20bbc59d0f31f/deep-reinforced-sum-model/attention.py#L46 这里说dec_out的形状是bsz * time * dec_hsz。而dec_out是model.py中tf.nn.dynamic_rnn的输出。因为你每个时间步的对dynamic_rnn的输入形状是bsz * 1 * emb_dim,所以dec_out的形状应该是bsz * 1 * dec_hsz,他不会保存前几个时间步的状态。麻烦您看看我的疑问是否正确。