dust3r icon indicating copy to clipboard operation
dust3r copied to clipboard

Running on Apple Mac M2

Open nmonet opened this issue 11 months ago • 5 comments

Good jobs guys ! Very impressive results.

I confirm that it's working on Apple Mac ( with Apple Silicon ), I try with more than 8 images with no error. 3 images, 6 images pairs, run in 6 sec + 15 sec 8 images, 56 images pairs, run in 70 sec + 90 sec

PYTORCH_ENABLE_MPS_FALLBACK=1 python3 demo.py --weights checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth --device mps
image

Did you plan to release some samples with a more bigger number of images ?

nmonet avatar Mar 08 '24 08:03 nmonet

how do you install it. I have some error when conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia image

liujun3660105 avatar Mar 11 '24 14:03 liujun3660105

conda install pytorch::pytorch torchvision torchaudio -c pytorch for Pytorch 2.2 on MacOS.

nmonet avatar Mar 11 '24 14:03 nmonet

Thanks ! We are working on something else currently, but yeah the default scene graph is complete (all images are connected to all other images) so all pairs will be computed, and used for the global alignment step. Complexity grows quadratically w.r.t number of images, but you can have a look at https://github.com/naver/dust3r/issues/1 that explains how to change the scene graph to reduce the number of edges (pairs to be considered). These are only sliding window and one-ref strategies, but, whenever you have a large number of images, you probably want to use retrieval to filter out bad pairs, build a sparse scene graph and only optimize for it (e.g. only considering compatible views). Note that DUSt3R itself can be used to score pairs based on the confidence of the predictions (unrelated image pairs usually have a globally low confidence) we had something for that but it did not make it into the release. We might add it at some point.

vincent-leroy avatar Mar 11 '24 15:03 vincent-leroy

Hi,

Were you able to generate the novel views on Mac?

HARSHA839 avatar Apr 07 '24 15:04 HARSHA839

I can confirm it works on Mac M3 too. Is there any way the code uses the parallel framework mac provides or it's only cuda?

yeraypabon avatar May 03 '24 23:05 yeraypabon