childsds icon indicating copy to clipboard operation
childsds copied to clipboard

Calculation of standard deviation scores adduced from different growth standards (WHO, US, UK, Germany, Italy, China, etc). Therefore, the calculation of SDS-values for different measures like BMI, we...

  • I moved the repository to Bitbucket for personal reasons.
  • childsds ** List of available references/LMS charts
    • you find a list of available reference tables by region and by item [[https://github.com/mvogel78/childsds/wiki][here]]. ** Installation
    • version 0.6.4 from cran via ~install.packages()~ or the respective menu ** Basic use *** Transformation into sds #+BEGIN_SRC R :session :exports both :results output library(childsds)

    generate example data

    x <- data.frame(height=c(50,100,60,54), sex=c("m","f","f","m"), age=c(0,2.9,0.6,0.2)) x$height.sds <- sds(value = x$height, age = x$age, sex = x$sex, male = "m", female = "f", ref = who.ref, item = "height") head(x) #+END_SRC

#+RESULTS[46a6ba3828dbb6c977bc976a6280e0b191bc02ee]: : height sex age height.sds : 1 50 m 0.0 0.06116878 : 2 100 f 2.9 1.54150151 : 3 60 f 0.6 -3.26293906 : 4 54 m 0.2 -2.82189275

*** make_percentile_tab() **** create a percentile table #+BEGIN_SRC R :session :exports both :results output library(childsds) head(tab <- make_percentile_tab(ref = nl4.ref, item = "heightM", perc = c(5,50,95), age = 1:3)) #+END_SRC

#+RESULTS: : sex age perc_05_0 perc_50_0 perc_95_0 nu mu sigma : 1 male 1 72.82291 77.15261 81.48232 1 77.15261 0.03411775 : 2 male 2 82.10371 87.67000 93.23629 1 87.67000 0.03860000 : 3 male 3 89.97701 96.28000 102.58299 1 96.28000 0.03980000 : 4 female 1 70.58366 74.89305 79.20245 1 74.89305 0.03498225 : 5 female 2 82.06492 86.76000 91.45508 1 86.76000 0.03290000 : 6 female 3 89.41744 94.83000 100.24256 1 94.83000 0.03470000

**** use the ~stack~ argument to create a dataframe in the long format for use in ggplot #+BEGIN_SRC R :session :exports both :results output library(childsds) head(tab <- make_percentile_tab(ref = nl4.ref, item = "heightM", perc = c(5,50,95), age = seq(0,20,by=0.1), stack = T)) #+END_SRC

#+RESULTS: : age sex variable value : 1 0.0 male perc_05_0 47.82905 : 2 0.1 male perc_05_0 51.65139 : 3 0.2 male perc_05_0 55.37913 : 4 0.3 male perc_05_0 58.68443 : 5 0.4 male perc_05_0 61.60275 : 6 0.5 male perc_05_0 64.21947

#+BEGIN_SRC R :session :exports both :results output graphics :file fig_1.png :height 400 :width 600 library(ggplot2) ggplot(tab, aes( x = age, y = value, group=paste(sex, variable))) + geom_line(aes(linetype = sex)) + theme_classic() + theme(legend.position = c(0.1,0.8)) #+END_SRC

#+RESULTS[9e68fab1cedee6b9007e7fe1696cac77f23d3ef4]: [[file:fig_1.png]]