lightweight_openpose
lightweight_openpose copied to clipboard
how to get the pb model
And there is my code to get pb model:
import tensorflow as tf #from create_tf_record import * from tensorflow.python.framework import graph_util
def freeze_graph(input_checkpoint,output_graph): output_node_names = "pre_hmap" saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) graph = tf.get_default_graph() # 获得默认的图 input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图
with tf.Session() as sess:
saver.restore(sess, input_checkpoint) #恢复图并得到数据
output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
sess=sess,
input_graph_def=input_graph_def,# 等于:sess.graph_def
output_node_names=output_node_names.split(','))# 如果有多个输出节点,以逗号隔开
with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
f.write(output_graph_def.SerializeToString()) #序列化输出
print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点
input_checkpoint = "./ckpt/model.ckpt-61236" out_pb_path='pb_pre.pb' freeze_graph(input_checkpoint, out_pb_path)
As shown in the figure, I visualize the PB model, and the input node name is strange, and there are two inputs. What's wrong when converting ckpt to pb ?