MADA
MADA copied to clipboard
Unfair experimental settings. (DeepLab v3+ vs. DeepLab v2)
In your experiments, your method used DeepLab v3+ as the backbone to compare with other methods that use DeepLab v2, which is totally unfair. Can you report the results based on DeepLab v2?
Yes please update the results.
For the warmup you have used AdaptNet which uses DeeplabV2 as the Segmentation model, was that also changed to DeeplabV3+? If yes can you please report the initial result after warmup?
Sorry for the delay. @zhijiew @sharat29ag The result on DeeplabV2 is implemented. Beyond expectation, the final result is 65.16 (mIoU), better than 64.89 (mIoU) with DeeplabV3+. Here is the origin training log: 2020-11-01 12:14:55,783 INFO Iter 15000 Loss: 0.1928 2020-11-01 12:14:55,784 INFO Iter 15000 Source Loss: 0.0000 2020-11-01 12:14:55,785 INFO Overall Acc: : 0.9418029923712912 2020-11-01 12:14:55,785 INFO Mean Acc : : 0.7246892190272104 2020-11-01 12:14:55,785 INFO FreqW Acc : : 0.893493677898871 2020-11-01 12:14:55,786 INFO Mean IoU : : 0.6516297024999936 2020-11-01 12:14:55,786 INFO 0: 0.9693999962471279 2020-11-01 12:14:55,786 INFO 1: 0.7685028486723834 2020-11-01 12:14:55,787 INFO 2: 0.8895210625419824 2020-11-01 12:14:55,787 INFO 3: 0.33887047797652403 2020-11-01 12:14:55,787 INFO 4: 0.47570431561588006 2020-11-01 12:14:55,787 INFO 5: 0.5278077449295415 2020-11-01 12:14:55,788 INFO 6: 0.5979519384158949 2020-11-01 12:14:55,788 INFO 7: 0.6525470266354098 2020-11-01 12:14:55,788 INFO 8: 0.9034188835393306 2020-11-01 12:14:55,788 INFO 9: 0.506204355591972 2020-11-01 12:14:55,789 INFO 10: 0.9236311508393851 2020-11-01 12:14:55,789 INFO 11: 0.7771101286799015 2020-11-01 12:14:55,789 INFO 12: 0.5364837525760412 2020-11-01 12:14:55,789 INFO 13: 0.9200637629029278 2020-11-01 12:14:55,790 INFO 14: 0.5212897908120947 2020-11-01 12:14:55,790 INFO 15: 0.5616047800928549 2020-11-01 12:14:55,790 INFO 16: 0.27918147195439025 2020-11-01 12:14:55,790 INFO 17: 0.5421158030330913 2020-11-01 12:14:55,790 INFO 18: 0.6895550564431461 2020-11-01 12:14:57,555 INFO Best iou until now is 0.6516297024999936
Our training settings is based on the CAG_UDA (Nips 2019, https://github.com/RogerZhangzz/CAG_UDA). However, the author has written the DeeplabV3+ to DeeplabV2. The only thing I can do is to report my result and framework honestly. And here is the origin codes and files for DeeplabV2: https://drive.google.com/drive/folders/1DnwzCabQnUbDeg6xOvkAeJZFG9V95g6n?usp=sharing
For the warmup you have used AdaptNet which uses DeeplabV2 as the Segmentation model, was that also changed to DeeplabV3+? If yes can you please report the initial result after warmup?
The reported warmup model is a DeeplabV3+ model. For a fair comparison, I reused the warmup model from the CAG_UDA (Nips 2019, https://github.com/RogerZhangzz/CAG_UDA), just here
The origin report is here: INFO:ptsemseg:Mean IoU : : 0.4253894928867592 INFO:ptsemseg:0: 0.882774709553075 INFO:ptsemseg:1: 0.44709892359884384 INFO:ptsemseg:2: 0.8203015163263928 INFO:ptsemseg:3: 0.314210933498157 INFO:ptsemseg:4: 0.24375954741277261 INFO:ptsemseg:5: 0.37366047858246787 INFO:ptsemseg:6: 0.3780563158565676 INFO:ptsemseg:7: 0.2466602204997033 INFO:ptsemseg:8: 0.8171751060949118 INFO:ptsemseg:9: 0.29433954349025376 INFO:ptsemseg:10: 0.7082770339997182 INFO:ptsemseg:11: 0.5259153279163223 INFO:ptsemseg:12: 0.2275386269806841 INFO:ptsemseg:13: 0.8395305067066231 INFO:ptsemseg:14: 0.1847198116100887 INFO:ptsemseg:15: 0.28772643642333734 INFO:ptsemseg:16: 0.1779052576284909 INFO:ptsemseg:17: 0.1595831186206701 INFO:ptsemseg:18: 0.15316695004934425
I hope my reply can dispel your doubts @sharat29ag .
For the warmup you have used AdaptNet which uses DeeplabV2 as the Segmentation model, was that also changed to DeeplabV3+? If yes can you please report the initial result after warmup?
The reported warmup model is a DeeplabV3+ model. For a fair comparison, I reused the warmup model from the CAG_UDA (Nips 2019, https://github.com/RogerZhangzz/CAG_UDA), just here
The origin report is here: INFO:ptsemseg:Mean IoU : : 0.4253894928867592 INFO:ptsemseg:0: 0.882774709553075 INFO:ptsemseg:1: 0.44709892359884384 INFO:ptsemseg:2: 0.8203015163263928 INFO:ptsemseg:3: 0.314210933498157 INFO:ptsemseg:4: 0.24375954741277261 INFO:ptsemseg:5: 0.37366047858246787 INFO:ptsemseg:6: 0.3780563158565676 INFO:ptsemseg:7: 0.2466602204997033 INFO:ptsemseg:8: 0.8171751060949118 INFO:ptsemseg:9: 0.29433954349025376 INFO:ptsemseg:10: 0.7082770339997182 INFO:ptsemseg:11: 0.5259153279163223 INFO:ptsemseg:12: 0.2275386269806841 INFO:ptsemseg:13: 0.8395305067066231 INFO:ptsemseg:14: 0.1847198116100887 INFO:ptsemseg:15: 0.28772643642333734 INFO:ptsemseg:16: 0.1779052576284909 INFO:ptsemseg:17: 0.1595831186206701 INFO:ptsemseg:18: 0.15316695004934425
I hope my reply can dispel your doubts @sharat29ag .
Thank you for the response will look to it.
Sorry for the delay. @zhijiew @sharat29ag The result on DeeplabV2 is implemented. Beyond expectation, the final result is 65.16 (mIoU), better than 64.89 (mIoU) with DeeplabV3+. Here is the origin training log: 2020-11-01 12:14:55,783 INFO Iter 15000 Loss: 0.1928 2020-11-01 12:14:55,784 INFO Iter 15000 Source Loss: 0.0000 2020-11-01 12:14:55,785 INFO Overall Acc: : 0.9418029923712912 2020-11-01 12:14:55,785 INFO Mean Acc : : 0.7246892190272104 2020-11-01 12:14:55,785 INFO FreqW Acc : : 0.893493677898871 2020-11-01 12:14:55,786 INFO Mean IoU : : 0.6516297024999936 2020-11-01 12:14:55,786 INFO 0: 0.9693999962471279 2020-11-01 12:14:55,786 INFO 1: 0.7685028486723834 2020-11-01 12:14:55,787 INFO 2: 0.8895210625419824 2020-11-01 12:14:55,787 INFO 3: 0.33887047797652403 2020-11-01 12:14:55,787 INFO 4: 0.47570431561588006 2020-11-01 12:14:55,787 INFO 5: 0.5278077449295415 2020-11-01 12:14:55,788 INFO 6: 0.5979519384158949 2020-11-01 12:14:55,788 INFO 7: 0.6525470266354098 2020-11-01 12:14:55,788 INFO 8: 0.9034188835393306 2020-11-01 12:14:55,788 INFO 9: 0.506204355591972 2020-11-01 12:14:55,789 INFO 10: 0.9236311508393851 2020-11-01 12:14:55,789 INFO 11: 0.7771101286799015 2020-11-01 12:14:55,789 INFO 12: 0.5364837525760412 2020-11-01 12:14:55,789 INFO 13: 0.9200637629029278 2020-11-01 12:14:55,790 INFO 14: 0.5212897908120947 2020-11-01 12:14:55,790 INFO 15: 0.5616047800928549 2020-11-01 12:14:55,790 INFO 16: 0.27918147195439025 2020-11-01 12:14:55,790 INFO 17: 0.5421158030330913 2020-11-01 12:14:55,790 INFO 18: 0.6895550564431461 2020-11-01 12:14:57,555 INFO Best iou until now is 0.6516297024999936
Our training settings is based on the CAG_UDA (Nips 2019, https://github.com/RogerZhangzz/CAG_UDA). However, the author has written the DeeplabV3+ to DeeplabV2. The only thing I can do is to report my result and framework honestly. And here is the origin codes and files for DeeplabV2: https://drive.google.com/drive/folders/1DnwzCabQnUbDeg6xOvkAeJZFG9V95g6n?usp=sharing
Is there any mistake, I use the model of DeepLabV3+ from https://github.com/RogerZhangzz/CAG_UDA to train cityscape, and got the following result: 2021-11-19 08:53:38,453 INFO Mean IoU : : 0.7482995820400281 2021-11-19 08:53:38,453 INFO Mean IoU (16) : : 0.752068355974944 2021-11-19 08:53:38,453 INFO Mean IoU (13) : : 0.7987122101405965 2021-11-19 08:53:38,454 INFO 0: 0.9765658041915719 2021-11-19 08:53:38,454 INFO 1: 0.8224862674039519 2021-11-19 08:53:38,455 INFO 2: 0.9112979273421086 2021-11-19 08:53:38,455 INFO 3: 0.5291329863290484 2021-11-19 08:53:38,455 INFO 4: 0.5701830669298439 2021-11-19 08:53:38,456 INFO 5: 0.5505189105124582 2021-11-19 08:53:38,456 INFO 6: 0.6062819018186969 2021-11-19 08:53:38,456 INFO 7: 0.7005523425411562 2021-11-19 08:53:38,456 INFO 8: 0.9159354501634949 2021-11-19 08:53:38,457 INFO 9: 0.6386477854657843 2021-11-19 08:53:38,457 INFO 10: 0.940211061631527 2021-11-19 08:53:38,457 INFO 11: 0.778340032763567 2021-11-19 08:53:38,458 INFO 12: 0.5697296981527584 2021-11-19 08:53:38,458 INFO 13: 0.9381809896493891 2021-11-19 08:53:38,458 INFO 14: 0.7726736052796462 2021-11-19 08:53:38,459 INFO 15: 0.8678234591230659 2021-11-19 08:53:38,459 INFO 16: 0.7732769724159989 2021-11-19 08:53:38,459 INFO 17: 0.6281585092931333 2021-11-19 08:53:38,460 INFO 18: 0.7276952877533335 2021-11-19 08:53:40,287 INFO Best iou until now is 0.7482995820400281 I train the model(Using ImageNet pretrained backbone) with the following Hyperparameter:
train_iters: 90000
optimizer:
name: 'SGD'
lr: 0.001
weight_decay: 5.0e-4
momentum: 0.9
lr_schedule:
name: 'poly_lr'
T_max: 90000
dataset:
name: cityscapes
rootpath: dataset/CityScape
split: train
img_rows: 1024
img_cols: 2048
batch_size: 5
img_norm: True
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
n_class: 19
augmentations:
gamma: 0.2
brightness: 0.5
saturation: 0.5
contrast: 0.5
rcrop: [1024, 512]
hflip: 0.5
I using amp to save memory so that I can train the model with single 2080ti.
Sorry for the delay. @zhijiew @sharat29ag The result on DeeplabV2 is implemented. Beyond expectation, the final result is 65.16 (mIoU), better than 64.89 (mIoU) with DeeplabV3+. Here is the origin training log: 2020-11-01 12:14:55,783 INFO Iter 15000 Loss: 0.1928 2020-11-01 12:14:55,784 INFO Iter 15000 Source Loss: 0.0000 2020-11-01 12:14:55,785 INFO Overall Acc: : 0.9418029923712912 2020-11-01 12:14:55,785 INFO Mean Acc : : 0.7246892190272104 2020-11-01 12:14:55,785 INFO FreqW Acc : : 0.893493677898871 2020-11-01 12:14:55,786 INFO Mean IoU : : 0.6516297024999936 2020-11-01 12:14:55,786 INFO 0: 0.9693999962471279 2020-11-01 12:14:55,786 INFO 1: 0.7685028486723834 2020-11-01 12:14:55,787 INFO 2: 0.8895210625419824 2020-11-01 12:14:55,787 INFO 3: 0.33887047797652403 2020-11-01 12:14:55,787 INFO 4: 0.47570431561588006 2020-11-01 12:14:55,787 INFO 5: 0.5278077449295415 2020-11-01 12:14:55,788 INFO 6: 0.5979519384158949 2020-11-01 12:14:55,788 INFO 7: 0.6525470266354098 2020-11-01 12:14:55,788 INFO 8: 0.9034188835393306 2020-11-01 12:14:55,788 INFO 9: 0.506204355591972 2020-11-01 12:14:55,789 INFO 10: 0.9236311508393851 2020-11-01 12:14:55,789 INFO 11: 0.7771101286799015 2020-11-01 12:14:55,789 INFO 12: 0.5364837525760412 2020-11-01 12:14:55,789 INFO 13: 0.9200637629029278 2020-11-01 12:14:55,790 INFO 14: 0.5212897908120947 2020-11-01 12:14:55,790 INFO 15: 0.5616047800928549 2020-11-01 12:14:55,790 INFO 16: 0.27918147195439025 2020-11-01 12:14:55,790 INFO 17: 0.5421158030330913 2020-11-01 12:14:55,790 INFO 18: 0.6895550564431461 2020-11-01 12:14:57,555 INFO Best iou until now is 0.6516297024999936
Our training settings is based on the CAG_UDA (Nips 2019, https://github.com/RogerZhangzz/CAG_UDA). However, the author has written the DeeplabV3+ to DeeplabV2. The only thing I can do is to report my result and framework honestly. And here is the origin codes and files for DeeplabV2: https://drive.google.com/drive/folders/1DnwzCabQnUbDeg6xOvkAeJZFG9V95g6n?usp=sharing
Hi, @munanning please share the initial weights for V2. Also the selection list contains 297 images, please share list of 150 images for fair comparison.
@sharat29ag The answer is 'the same'. The weight can be found in Adaptset (https://github.com/wasidennis/AdaptSegNet). The list is the same as the V3 version.
Thanks.
@munanning does the warmup weights at sgate1 for GTA->City and Synthia->City were same?