LocalAI
LocalAI copied to clipboard
Transformers backend supports mps
**LocalAI version:2.16.0
Environment, CPU architecture, OS, and Version:
mac studio M2 Ultra Describe the bug
using backend transformers for glm4, trust_remote_code: true not correctly used by backend/python/transformers/backend.py To Reproduce
Expected behavior
Logs
Additional context
modified some lines for running without error
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
print(f"request.Model: {request.Model}, request.TrustRemoteCode: {request.TrustRemoteCode}")
compute = "auto"
if request.F16Memory == True:
compute=torch.bfloat16
self.CUDA = request.CUDA
self.OV=False
# 检查是否支持 MPS
if torch.backends.mps.is_available():
device_map = "mps"
else:
print("MPS not supported, using CPU instead.", file=sys.stderr)
device_map = "cpu"
...
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True,
trust_remote_code=request.TrustRemoteCode)
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
set_seed(request.Seed)
# Tokenize input
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
# print("Embeddings:", sentence_embeddings, file=sys.stderr)
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)
if request.TopP == 0:
request.TopP = 0.9
if request.TopK == 0:
request.TopK = 40
prompt = request.Prompt
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
eos_token_id = self.tokenizer.eos_token_id
if request.StopPrompts:
eos_token_id = []
for word in request.StopPrompts:
eos_token_id.append(self.tokenizer.convert_tokens_to_ids(word))
inputs = self.tokenizer(prompt, return_tensors="pt")
if request.Tokens > 0:
max_tokens = request.Tokens
else:
max_tokens = self.max_tokens - inputs["input_ids"].size()[inputs["input_ids"].dim()-1]
if self.CUDA:
inputs = inputs.to("cuda")
if XPU and self.OV == False:
inputs = inputs.to("xpu")
streaming = False
if torch.backends.mps.is_available():
inputs = inputs.to("mps")
...