Ma Shuhao
                                            Ma Shuhao
                                        
                                    在eval结果中,要么只包含实例信息,要么只包含语义信息。那么实例信息中每个box属于什么语义并不清楚。而语义信息中的bounding box却是一个大的Box。也就是说每个实例的box没有与语义信息关联
I have read your papers(Understanding Convolution for semantic segmentation ),and run your net.Then I make an improvement.But When submit my results to pascal voc server,I always get an evaluation error....
ModuleNotFoundError: No module named 'crowdposetools'
在判断一个点是否落于三角行内,当出现如下情形: variable1 = np.array([[0, 20], [20, 20], [20, 20]]) variable2=np.array([x,x])时, isPointInTri(variable2, variable1) 这个函数的判断结果都为True, 也就是说,无论x为何值,结果都是True
I use the final.ckpt to inference the small dataset, and I set the argv --voxel_dim 208 208 48. But the result is a green map.Why? And I save the result...
`shape_loss = torch.sum(self.shape_prior(body_model_output.betas)) * self.shape_weight ** 2` So, what is the reason that the shape_loss. Anybody can explain it for me.
你好,我用您的代码训练COCOC数据集,发现'loss_classifier'会下降,但是 'loss_keypoint'基本居高不下
Please see the function that come from utils.py: def one_hot_it_v11_dice(label, label_info): semantic_map = [] void = np.zeros(label.shape[:2]) for index, info in enumerate(label_info): color = label_info[info][:3] class_11 = label_info[info][3] if class_11...
**NoiseModelling version** 4.0.2 **Describe the bug** when I use the receivers::Delaunay_grid, I found it is very very slow **To Reproduce** Steps to reproduce the behavior: 1. load BUILDINGS, ROADS and...
### What's your question? I want to modify the shape value directly, by using sf.shape(i).points = [[xx,xx]],but it is nothing useful