hexhamming
hexhamming copied to clipboard
:heavy_division_sign: SIMD-accelerated bitwise hamming distance Python module for hexadecimal strings
hexhamming
|Pip|_ |Prs|_ |Github|_
.. |Pip| image:: https://badge.fury.io/py/hexhamming.svg .. _Pip: https://badge.fury.io/py/hexhamming
.. |Prs| image:: https://img.shields.io/badge/PRs-welcome-brightgreen.svg .. _Prs: .github/CONTRIBUTING.md#pull-requests
.. |Github| image:: https://github.com/mrecachinas/hexhamming/workflows/build/badge.svg .. _Github: https://github.com/mrecachinas/hexhamming/actions
What does it do?
This module performs a fast bitwise hamming distance of two hexadecimal strings.
This looks like::
DEADBEEF = 11011110101011011011111011101111
00000000 = 00000000000000000000000000000000
XOR = 11011110101011011011111011101111
Hamming = number of ones in DEADBEEF ^ 00000000 = 24
This essentially amounts to
::
>>> import gmpy
>>> gmpy.popcount(0xdeadbeef ^ 0x00000000)
24
except with Python strings, so
::
>>> import gmpy
>>> gmpy.popcount(int("deadbeef", 16) ^ int("00000000", 16))
24
A few assumptions are made and enforced:
- this is a valid hexadecimal string (i.e.,
[a-fA-F0-9]+
) - the strings are the same length
- the strings do not begin with
"0x"
Why yet another Hamming distance library?
There are a lot of fantastic (python) libraries that offer methods to calculate various edit distances, including Hamming distances: Distance, textdistance, scipy, jellyfish, etc.
In this case, I needed a hamming distance library that worked on hexadecimal
strings (i.e., a Python str
) and performed blazingly fast.
Furthermore, I often did not care about hex strings greater than 256 bits.
That length constraint is different vs all the other libraries and enabled me
to explore vectorization techniques via numba
, numpy
, and
SSE/AVX
intrinsics.
Lastly, I wanted to minimize dependencies, meaning you do not need to install
numpy
, gmpy
, cython
, pypy
, pythran
, etc.
Eventually, after playing around with gmpy.popcount
, numba.jit
,
pythran.run
, numpy
, I decided to write what I wanted
in essentially raw C. At this point, I'm using raw char*
and
int*
, so exploring re-writing this in Fortran makes little sense.
Installation
To install, ensure you have Python 3.6+. Run
::
pip install hexhamming
or to install from source
::
git clone https://github.com/mrecachinas/hexhamming
cd hexhamming
python setup.py install # or pip install .
If you want to contribute to hexhamming, you should install the dev dependencies
::
pip install -r requirements-dev.txt
and make sure the tests pass with
::
python -m pytest -vls .
Example
Using hexhamming
is as simple as
::
>>> from hexhamming import hamming_distance_string
>>> hamming_distance_string("deadbeef", "00000000")
24
New in v2.0.0 : hexhamming
now supports byte
s via hamming_distance_bytes
.
You use it in the exact same way as before, except you pass in a byte string.
::
>>> from hexhamming import hamming_distance_bytes
>>> hamming_distance_bytes(b"\xde\xad\xbe\xef", b"\x00\x00\x00\x00")
24
We also provide a method for a quick boolean check of whether two hexadecimal strings are within a given Hamming distance.
::
>>> from hexhamming import check_hexstrings_within_dist
>>> check_hexstrings_within_dist("ffff", "fffe", 2)
True
>>> check_hexstrings_within_dist("ffff", "0000", 2)
False
Similarly, hexhamming
supports byte arrays via check_bytes_arrays_within_dist
, which has
a similar API as check_hexstrings_within_dist
, except it expects a byte array. Additionally,
it will check if any element of a byte array is within a specified Hamming Distance of another
byte array.
Benchmark
Below is a benchmark using pytest-benchmark
with hexhamming==v1.3.2
my 2020 2.0 GHz quad-core Intel Core i5 16 GB 3733 MHz LPDDR4 macOS Catalina (10.15.5)
with Python 3.7.3 and Apple clang version 11.0.3 (clang-1103.0.32.62).
======================================= =========== ========== ============= ======== ============ Name Mean (ns) Std (ns) Median (ns) Rounds Iterations ======================================= =========== ========== ============= ======== ============ test_hamming_distance_bench_3 93.8 10.5 94.3 53268 200 test_hamming_distance_bench_3_same 94.2 15.2 94.9 102146 100 test_check_hexstrings_within_dist_bench 231.9 104.2 216.5 195122 22 test_hamming_distance_bench_256 97.5 34.1 94.0 195122 22 test_hamming_distance_bench_1000 489.8 159.4 477.5 94411 20 test_hamming_distance_bench_1000_same 497.8 87.8 496.6 18971 20 test_hamming_distance_bench_1024 509.9 299.5 506.7 18652 10 test_hamming_distance_bench_1024_same 467.4 205.9 450.4 181819 10 ======================================= =========== ========== ============= ======== ============