stable-diffusion-tf-docker
stable-diffusion-tf-docker copied to clipboard
500 failed request
Any suggestions on how to get more information on this error?
AxiosError: Request failed with status code 500
at settle (/Users/Documents/workspace/adva/node_modules/axios/dist/node/axios.cjs:1855:12)
at IncomingMessage.handleStreamEnd (/Users/Documents/workspace/adva/node_modules/axios/dist/node/axios.cjs:2712:11)
at IncomingMessage.emit (node:events:539:35)
at endReadableNT (node:internal/streams/readable:1345:12)
at processTicksAndRejections (node:internal/process/task_queues:83:21) {
code: 'ERR_BAD_RESPONSE',
config: {
transitional: {
silentJSONParsing: true,
forcedJSONParsing: true,
clarifyTimeoutError: false
},
adapter: [ 'xhr', 'http' ],
transformRequest: [ [Function: transformRequest] ],
transformResponse: [ [Function: transformResponse] ],
timeout: 0,
xsrfCookieName: 'XSRF-TOKEN',
xsrfHeaderName: 'X-XSRF-TOKEN',
maxContentLength: -1,
maxBodyLength: -1,
env: { FormData: [Function], Blob: null },
validateStatus: [Function: validateStatus],
headers: AxiosHeaders {
Accept: 'application/json, text/plain, */*',
'Content-Type': 'application/json',
'User-Agent': 'axios/1.2.1',
'Content-Length': '63',
'Accept-Encoding': 'gzip, compress, deflate, br'
},
method: 'post',
url: 'http://xx.8x.12.10x:200xx/generate',
data: '{"prompt":"Write an image description of a NASA rocket launch"}'
},
request: <ref *1> ClientRequest {
_events: [Object: null prototype] {
abort: [Function (anonymous)],
aborted: [Function (anonymous)],
connect: [Function (anonymous)],
error: [Function (anonymous)],
socket: [Function (anonymous)],
timeout: [Function (anonymous)],
prefinish: [Function: requestOnPrefinish]
},
_eventsCount: 7,
_maxListeners: undefined,
outputData: [],
outputSize: 0,
writable: true,
destroyed: false,
_last: true,
chunkedEncoding: false,
shouldKeepAlive: false,
maxRequestsOnConnectionReached: false,
_defaultKeepAlive: true,
useChunkedEncodingByDefault: true,
sendDate: false,
_removedConnection: false,
_removedContLen: false,
_removedTE: false,
_contentLength: null,
_hasBody: true,
_trailer: '',
finished: true,
_headerSent: true,
_closed: false,
socket: Socket {
connecting: false,
_hadError: false,
_parent: null,
_host: null,
_readableState: [ReadableState],
_events: [Object: null prototype],
_eventsCount: 7,
_maxListeners: undefined,
_writableState: [WritableState],
allowHalfOpen: false,
_sockname: null,
_pendingData: null,
_pendingEncoding: '',
server: null,
_server: null,
parser: null,
_httpMessage: [Circular *1],
[Symbol(async_id_symbol)]: 108,
[Symbol(kHandle)]: [TCP],
[Symbol(lastWriteQueueSize)]: 0,
[Symbol(timeout)]: null,
[Symbol(kBuffer)]: null,
[Symbol(kBufferCb)]: null,
[Symbol(kBufferGen)]: null,
[Symbol(kCapture)]: false,
[Symbol(kSetNoDelay)]: false,
[Symbol(kSetKeepAlive)]: true,
[Symbol(kSetKeepAliveInitialDelay)]: 60,
[Symbol(kBytesRead)]: 0,
[Symbol(kBytesWritten)]: 0,
[Symbol(RequestTimeout)]: undefined
},
_header: 'POST /generate HTTP/1.1\r\n' +
'Accept: application/json, text/plain, */*\r\n' +
'Content-Type: application/json\r\n' +
'User-Agent: axios/1.2.1\r\n' +
'Content-Length: 63\r\n' +
'Accept-Encoding: gzip, compress, deflate, br\r\n' +
'Host: xx.8x.1x.10x:200xx\r\n' +
'Connection: close\r\n' +
'\r\n',
_keepAliveTimeout: 0,
_onPendingData: [Function: nop],
agent: Agent {
_events: [Object: null prototype],
_eventsCount: 2,
_maxListeners: undefined,
defaultPort: 80,
protocol: 'http:',
options: [Object: null prototype],
requests: [Object: null prototype] {},
sockets: [Object: null prototype],
freeSockets: [Object: null prototype] {},
keepAliveMsecs: 1000,
keepAlive: false,
maxSockets: Infinity,
maxFreeSockets: 256,
scheduling: 'lifo',
maxTotalSockets: Infinity,
totalSocketCount: 1,
[Symbol(kCapture)]: false
},
socketPath: undefined,
method: 'POST',
maxHeaderSize: undefined,
insecureHTTPParser: undefined,
path: '/generate',
_ended: true,
res: IncomingMessage {
_readableState: [ReadableState],
_events: [Object: null prototype],
_eventsCount: 4,
_maxListeners: undefined,
socket: [Socket],
httpVersionMajor: 1,
httpVersionMinor: 1,
httpVersion: '1.1',
complete: true,
rawHeaders: [Array],
rawTrailers: [],
aborted: false,
upgrade: false,
url: '',
method: null,
statusCode: 500,
statusMessage: 'Internal Server Error',
client: [Socket],
_consuming: false,
_dumped: false,
req: [Circular *1],
responseUrl: 'http://xx.8x.12.10x:200xx/generate',
redirects: [],
[Symbol(kCapture)]: false,
[Symbol(kHeaders)]: [Object],
[Symbol(kHeadersCount)]: 10,
[Symbol(kTrailers)]: null,
[Symbol(kTrailersCount)]: 0,
[Symbol(RequestTimeout)]: undefined
},
aborted: false,
timeoutCb: null,
upgradeOrConnect: false,
parser: null,
maxHeadersCount: null,
reusedSocket: false,
host: 'xx.8x.12.10x:200xx',
protocol: 'http:',
_redirectable: Writable {
_writableState: [WritableState],
_events: [Object: null prototype],
_eventsCount: 3,
_maxListeners: undefined,
_options: [Object],
_ended: true,
_ending: true,
_redirectCount: 0,
_redirects: [],
_requestBodyLength: 63,
_requestBodyBuffers: [],
_onNativeResponse: [Function (anonymous)],
_currentRequest: [Circular *1],
_currentUrl: 'http://xx.8x.12.10x:200xx/generate',
[Symbol(kCapture)]: false
},
[Symbol(kCapture)]: false,
[Symbol(kNeedDrain)]: false,
[Symbol(corked)]: 0,
[Symbol(kOutHeaders)]: [Object: null prototype] {
accept: [Array],
'content-type': [Array],
'user-agent': [Array],
'content-length': [Array],
'accept-encoding': [Array],
host: [Array]
}
},
response: {
status: 500,
statusText: 'Internal Server Error',
headers: AxiosHeaders {
date: 'Tue, 27 Dec 2022 19:08:27 GMT',
server: 'uvicorn',
'content-length': '21',
'content-type': 'text/plain; charset=utf-8',
connection: 'close'
},
config: {
transitional: [Object],
adapter: [Array],
transformRequest: [Array],
transformResponse: [Array],
timeout: 0,
xsrfCookieName: 'XSRF-TOKEN',
xsrfHeaderName: 'X-XSRF-TOKEN',
maxContentLength: -1,
maxBodyLength: -1,
env: [Object],
validateStatus: [Function: validateStatus],
headers: [AxiosHeaders],
method: 'post',
url: 'http://xx.8x.12.10x:200xx/generate',
data: '{"prompt":"Write an image description of a NASA rocket launch"}'
},
request: <ref *1> ClientRequest {
_events: [Object: null prototype],
_eventsCount: 7,
_maxListeners: undefined,
outputData: [],
outputSize: 0,
writable: true,
destroyed: false,
_last: true,
chunkedEncoding: false,
shouldKeepAlive: false,
maxRequestsOnConnectionReached: false,
_defaultKeepAlive: true,
useChunkedEncodingByDefault: true,
sendDate: false,
_removedConnection: false,
_removedContLen: false,
_removedTE: false,
_contentLength: null,
_hasBody: true,
_trailer: '',
finished: true,
_headerSent: true,
_closed: false,
socket: [Socket],
_header: 'POST /generate HTTP/1.1\r\n' +
'Accept: application/json, text/plain, */*\r\n' +
'Content-Type: application/json\r\n' +
'User-Agent: axios/1.2.1\r\n' +
'Content-Length: 63\r\n' +
'Accept-Encoding: gzip, compress, deflate, br\r\n' +
'Host: xx.8x.12.10x:200xx\r\n' +
'Connection: close\r\n' +
'\r\n',
_keepAliveTimeout: 0,
_onPendingData: [Function: nop],
agent: [Agent],
socketPath: undefined,
method: 'POST',
maxHeaderSize: undefined,
insecureHTTPParser: undefined,
path: '/generate',
_ended: true,
res: [IncomingMessage],
aborted: false,
timeoutCb: null,
upgradeOrConnect: false,
parser: null,
maxHeadersCount: null,
reusedSocket: false,
host: 'xx.8x.12.10x:200xx',
protocol: 'http:',
_redirectable: [Writable],
[Symbol(kCapture)]: false,
[Symbol(kNeedDrain)]: false,
[Symbol(corked)]: 0,
[Symbol(kOutHeaders)]: [Object: null prototype]
},
data: 'Internal Server Error'
}
}
Hi @jp555soul you can checkout the logs with the command docker compose logs. If it doesn't give a clue for what's going wrong, you can share the request you're trying with I'll have a look.
Hey @monatis TY!
Output from docker logs below.
Based on some searching I'm not seeing a clear cut solution. Also attached a screenshot of the hardware to double-check its not a memory issue.

stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858046: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 176947200 totalling 168.75MiB
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858144: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 8589934592 totalling 16.00GiB
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858244: I tensorflow/core/common_runtime/bfc_allocator.cc:1101] Sum Total of in-use chunks: 20.46GiB
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858337: I tensorflow/core/common_runtime/bfc_allocator.cc:1103] total_region_allocated_bytes_: 23381475328 memory_limit_: 23381475328 available bytes: 0 curr_region_allocation_bytes_: 46762950656
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858366: I tensorflow/core/common_runtime/bfc_allocator.cc:1109] Stats:
stable-diffusion-tf-docker-app-1 | Limit: 23381475328
stable-diffusion-tf-docker-app-1 | InUse: 21972676864
stable-diffusion-tf-docker-app-1 | MaxInUse: 21972777472
stable-diffusion-tf-docker-app-1 | NumAllocs: 6794
stable-diffusion-tf-docker-app-1 | MaxAllocSize: 8589934592
stable-diffusion-tf-docker-app-1 | Reserved: 0
stable-diffusion-tf-docker-app-1 | PeakReserved: 0
stable-diffusion-tf-docker-app-1 | LargestFreeBlock: 0
stable-diffusion-tf-docker-app-1 |
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858497: W tensorflow/core/common_runtime/bfc_allocator.cc:491] ***********************************************************************************************_____
stable-diffusion-tf-docker-app-1 | 2022-12-27 19:08:37.858619: W tensorflow/core/framework/op_kernel.cc:1780] OP_REQUIRES failed at softmax_op_gpu.cu.cc:222 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[1,8,16384,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
stable-diffusion-tf-docker-app-1 | INFO: 76.90.83.17:54975 - "POST /generate HTTP/1.1" 500 Internal Server Error
49 981: 0%| | 0/50 [00:10<?, ?it/s]
stable-diffusion-tf-docker-app-1 | ERROR: Exception in ASGI application
stable-diffusion-tf-docker-app-1 | Traceback (most recent call last):
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/uvicorn/protocols/http/httptools_impl.py", line 419, in run_asgi
stable-diffusion-tf-docker-app-1 | result = await app( # type: ignore[func-returns-value]
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__
stable-diffusion-tf-docker-app-1 | return await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/fastapi/applications.py", line 270, in __call__
stable-diffusion-tf-docker-app-1 | await super().__call__(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/applications.py", line 124, in __call__
stable-diffusion-tf-docker-app-1 | await self.middleware_stack(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/errors.py", line 184, in __call__
stable-diffusion-tf-docker-app-1 | raise exc
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/errors.py", line 162, in __call__
stable-diffusion-tf-docker-app-1 | await self.app(scope, receive, _send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/exceptions.py", line 79, in __call__
stable-diffusion-tf-docker-app-1 | raise exc
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/exceptions.py", line 68, in __call__
stable-diffusion-tf-docker-app-1 | await self.app(scope, receive, sender)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__
stable-diffusion-tf-docker-app-1 | raise e
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__
stable-diffusion-tf-docker-app-1 | await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 706, in __call__
stable-diffusion-tf-docker-app-1 | await route.handle(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 276, in handle
stable-diffusion-tf-docker-app-1 | await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 66, in app
stable-diffusion-tf-docker-app-1 | response = await func(request)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/fastapi/routing.py", line 235, in app
stable-diffusion-tf-docker-app-1 | raw_response = await run_endpoint_function(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/fastapi/routing.py", line 163, in run_endpoint_function
stable-diffusion-tf-docker-app-1 | return await run_in_threadpool(dependant.call, **values)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/starlette/concurrency.py", line 41, in run_in_threadpool
stable-diffusion-tf-docker-app-1 | return await anyio.to_thread.run_sync(func, *args)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/anyio/to_thread.py", line 31, in run_sync
stable-diffusion-tf-docker-app-1 | return await get_asynclib().run_sync_in_worker_thread(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 937, in run_sync_in_worker_thread
stable-diffusion-tf-docker-app-1 | return await future
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 867, in run
stable-diffusion-tf-docker-app-1 | result = context.run(func, *args)
stable-diffusion-tf-docker-app-1 | File "/app/./app.py", line 45, in generate
stable-diffusion-tf-docker-app-1 | img = generator.generate(req.prompt, num_steps=req.steps, unconditional_guidance_scale=req.scale, temperature=1, batch_size=1, seed=req.seed)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 116, in generate
stable-diffusion-tf-docker-app-1 | e_t = self.get_model_output(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 190, in get_model_output
stable-diffusion-tf-docker-app-1 | unconditional_latent = self.diffusion_model.predict_on_batch(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2474, in predict_on_batch
stable-diffusion-tf-docker-app-1 | outputs = self.predict_function(iterator)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
stable-diffusion-tf-docker-app-1 | raise e.with_traceback(filtered_tb) from None
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py", line 54, in quick_execute
stable-diffusion-tf-docker-app-1 | tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
stable-diffusion-tf-docker-app-1 | tensorflow.python.framework.errors_impl.ResourceExhaustedError: Graph execution error:
stable-diffusion-tf-docker-app-1 |
stable-diffusion-tf-docker-app-1 | Detected at node 'model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax' defined at (most recent call last):
stable-diffusion-tf-docker-app-1 | File "/usr/lib/python3.8/threading.py", line 890, in _bootstrap
stable-diffusion-tf-docker-app-1 | self._bootstrap_inner()
stable-diffusion-tf-docker-app-1 | File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
stable-diffusion-tf-docker-app-1 | self.run()
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 867, in run
stable-diffusion-tf-docker-app-1 | result = context.run(func, *args)
stable-diffusion-tf-docker-app-1 | File "/app/./app.py", line 45, in generate
stable-diffusion-tf-docker-app-1 | img = generator.generate(req.prompt, num_steps=req.steps, unconditional_guidance_scale=req.scale, temperature=1, batch_size=1, seed=req.seed)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 116, in generate
stable-diffusion-tf-docker-app-1 | e_t = self.get_model_output(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 190, in get_model_output
stable-diffusion-tf-docker-app-1 | unconditional_latent = self.diffusion_model.predict_on_batch(
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2474, in predict_on_batch
stable-diffusion-tf-docker-app-1 | outputs = self.predict_function(iterator)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2041, in predict_function
stable-diffusion-tf-docker-app-1 | return step_function(self, iterator)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2027, in step_function
stable-diffusion-tf-docker-app-1 | outputs = model.distribute_strategy.run(run_step, args=(data,))
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2015, in run_step
stable-diffusion-tf-docker-app-1 | outputs = model.predict_step(data)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1983, in predict_step
stable-diffusion-tf-docker-app-1 | return self(x, training=False)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 557, in __call__
stable-diffusion-tf-docker-app-1 | return super().__call__(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1 | outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py", line 510, in call
stable-diffusion-tf-docker-app-1 | return self._run_internal_graph(inputs, training=training, mask=mask)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py", line 667, in _run_internal_graph
stable-diffusion-tf-docker-app-1 | outputs = node.layer(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 557, in __call__
stable-diffusion-tf-docker-app-1 | return super().__call__(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1 | outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 207, in call
stable-diffusion-tf-docker-app-1 | for b in self.input_blocks:
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 208, in call
stable-diffusion-tf-docker-app-1 | for layer in b:
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 209, in call
stable-diffusion-tf-docker-app-1 | x = apply(x, layer)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 198, in apply
stable-diffusion-tf-docker-app-1 | if isinstance(layer, ResBlock):
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 200, in apply
stable-diffusion-tf-docker-app-1 | elif isinstance(layer, SpatialTransformer):
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 201, in apply
stable-diffusion-tf-docker-app-1 | x = layer([x, context])
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1 | outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 112, in call
stable-diffusion-tf-docker-app-1 | for block in self.transformer_blocks:
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 113, in call
stable-diffusion-tf-docker-app-1 | x = block([x, context])
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1 | outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 91, in call
stable-diffusion-tf-docker-app-1 | x = self.attn1([self.norm1(x)]) + x
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1 | outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1 | return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 67, in call
stable-diffusion-tf-docker-app-1 | weights = keras.activations.softmax(score) # (bs, num_heads, time, time)
stable-diffusion-tf-docker-app-1 | File "/usr/local/lib/python3.8/dist-packages/keras/activations.py", line 84, in softmax
stable-diffusion-tf-docker-app-1 | output = tf.nn.softmax(x, axis=axis)
stable-diffusion-tf-docker-app-1 | Node: 'model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax'
stable-diffusion-tf-docker-app-1 | OOM when allocating tensor with shape[1,8,16384,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
stable-diffusion-tf-docker-app-1 | [[{{node model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax}}]]
stable-diffusion-tf-docker-app-1 | Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
stable-diffusion-tf-docker-app-1 | [Op:__inference_predict_function_40478]
root@c00ecfce-f3eb-4261-a178-e3461c736aec:/home/user/stable-diffusion-tf-docker#