stable-diffusion-tf-docker icon indicating copy to clipboard operation
stable-diffusion-tf-docker copied to clipboard

500 failed request

Open jp555soul opened this issue 2 years ago • 2 comments

Any suggestions on how to get more information on this error?

AxiosError: Request failed with status code 500
    at settle (/Users/Documents/workspace/adva/node_modules/axios/dist/node/axios.cjs:1855:12)
    at IncomingMessage.handleStreamEnd (/Users/Documents/workspace/adva/node_modules/axios/dist/node/axios.cjs:2712:11)
    at IncomingMessage.emit (node:events:539:35)
    at endReadableNT (node:internal/streams/readable:1345:12)
    at processTicksAndRejections (node:internal/process/task_queues:83:21) {
  code: 'ERR_BAD_RESPONSE',
  config: {
    transitional: {
      silentJSONParsing: true,
      forcedJSONParsing: true,
      clarifyTimeoutError: false
    },
    adapter: [ 'xhr', 'http' ],
    transformRequest: [ [Function: transformRequest] ],
    transformResponse: [ [Function: transformResponse] ],
    timeout: 0,
    xsrfCookieName: 'XSRF-TOKEN',
    xsrfHeaderName: 'X-XSRF-TOKEN',
    maxContentLength: -1,
    maxBodyLength: -1,
    env: { FormData: [Function], Blob: null },
    validateStatus: [Function: validateStatus],
    headers: AxiosHeaders {
      Accept: 'application/json, text/plain, */*',
      'Content-Type': 'application/json',
      'User-Agent': 'axios/1.2.1',
      'Content-Length': '63',
      'Accept-Encoding': 'gzip, compress, deflate, br'
    },
    method: 'post',
    url: 'http://xx.8x.12.10x:200xx/generate',
    data: '{"prompt":"Write an image description of a NASA rocket launch"}'
  },
  request: <ref *1> ClientRequest {
    _events: [Object: null prototype] {
      abort: [Function (anonymous)],
      aborted: [Function (anonymous)],
      connect: [Function (anonymous)],
      error: [Function (anonymous)],
      socket: [Function (anonymous)],
      timeout: [Function (anonymous)],
      prefinish: [Function: requestOnPrefinish]
    },
    _eventsCount: 7,
    _maxListeners: undefined,
    outputData: [],
    outputSize: 0,
    writable: true,
    destroyed: false,
    _last: true,
    chunkedEncoding: false,
    shouldKeepAlive: false,
    maxRequestsOnConnectionReached: false,
    _defaultKeepAlive: true,
    useChunkedEncodingByDefault: true,
    sendDate: false,
    _removedConnection: false,
    _removedContLen: false,
    _removedTE: false,
    _contentLength: null,
    _hasBody: true,
    _trailer: '',
    finished: true,
    _headerSent: true,
    _closed: false,
    socket: Socket {
      connecting: false,
      _hadError: false,
      _parent: null,
      _host: null,
      _readableState: [ReadableState],
      _events: [Object: null prototype],
      _eventsCount: 7,
      _maxListeners: undefined,
      _writableState: [WritableState],
      allowHalfOpen: false,
      _sockname: null,
      _pendingData: null,
      _pendingEncoding: '',
      server: null,
      _server: null,
      parser: null,
      _httpMessage: [Circular *1],
      [Symbol(async_id_symbol)]: 108,
      [Symbol(kHandle)]: [TCP],
      [Symbol(lastWriteQueueSize)]: 0,
      [Symbol(timeout)]: null,
      [Symbol(kBuffer)]: null,
      [Symbol(kBufferCb)]: null,
      [Symbol(kBufferGen)]: null,
      [Symbol(kCapture)]: false,
      [Symbol(kSetNoDelay)]: false,
      [Symbol(kSetKeepAlive)]: true,
      [Symbol(kSetKeepAliveInitialDelay)]: 60,
      [Symbol(kBytesRead)]: 0,
      [Symbol(kBytesWritten)]: 0,
      [Symbol(RequestTimeout)]: undefined
    },
    _header: 'POST /generate HTTP/1.1\r\n' +
      'Accept: application/json, text/plain, */*\r\n' +
      'Content-Type: application/json\r\n' +
      'User-Agent: axios/1.2.1\r\n' +
      'Content-Length: 63\r\n' +
      'Accept-Encoding: gzip, compress, deflate, br\r\n' +
      'Host: xx.8x.1x.10x:200xx\r\n' +
      'Connection: close\r\n' +
      '\r\n',
    _keepAliveTimeout: 0,
    _onPendingData: [Function: nop],
    agent: Agent {
      _events: [Object: null prototype],
      _eventsCount: 2,
      _maxListeners: undefined,
      defaultPort: 80,
      protocol: 'http:',
      options: [Object: null prototype],
      requests: [Object: null prototype] {},
      sockets: [Object: null prototype],
      freeSockets: [Object: null prototype] {},
      keepAliveMsecs: 1000,
      keepAlive: false,
      maxSockets: Infinity,
      maxFreeSockets: 256,
      scheduling: 'lifo',
      maxTotalSockets: Infinity,
      totalSocketCount: 1,
      [Symbol(kCapture)]: false
    },
    socketPath: undefined,
    method: 'POST',
    maxHeaderSize: undefined,
    insecureHTTPParser: undefined,
    path: '/generate',
    _ended: true,
    res: IncomingMessage {
      _readableState: [ReadableState],
      _events: [Object: null prototype],
      _eventsCount: 4,
      _maxListeners: undefined,
      socket: [Socket],
      httpVersionMajor: 1,
      httpVersionMinor: 1,
      httpVersion: '1.1',
      complete: true,
      rawHeaders: [Array],
      rawTrailers: [],
      aborted: false,
      upgrade: false,
      url: '',
      method: null,
      statusCode: 500,
      statusMessage: 'Internal Server Error',
      client: [Socket],
      _consuming: false,
      _dumped: false,
      req: [Circular *1],
      responseUrl: 'http://xx.8x.12.10x:200xx/generate',
      redirects: [],
      [Symbol(kCapture)]: false,
      [Symbol(kHeaders)]: [Object],
      [Symbol(kHeadersCount)]: 10,
      [Symbol(kTrailers)]: null,
      [Symbol(kTrailersCount)]: 0,
      [Symbol(RequestTimeout)]: undefined
    },
    aborted: false,
    timeoutCb: null,
    upgradeOrConnect: false,
    parser: null,
    maxHeadersCount: null,
    reusedSocket: false,
    host: 'xx.8x.12.10x:200xx',
    protocol: 'http:',
    _redirectable: Writable {
      _writableState: [WritableState],
      _events: [Object: null prototype],
      _eventsCount: 3,
      _maxListeners: undefined,
      _options: [Object],
      _ended: true,
      _ending: true,
      _redirectCount: 0,
      _redirects: [],
      _requestBodyLength: 63,
      _requestBodyBuffers: [],
      _onNativeResponse: [Function (anonymous)],
      _currentRequest: [Circular *1],
      _currentUrl: 'http://xx.8x.12.10x:200xx/generate',
      [Symbol(kCapture)]: false
    },
    [Symbol(kCapture)]: false,
    [Symbol(kNeedDrain)]: false,
    [Symbol(corked)]: 0,
    [Symbol(kOutHeaders)]: [Object: null prototype] {
      accept: [Array],
      'content-type': [Array],
      'user-agent': [Array],
      'content-length': [Array],
      'accept-encoding': [Array],
      host: [Array]
    }
  },
  response: {
    status: 500,
    statusText: 'Internal Server Error',
    headers: AxiosHeaders {
      date: 'Tue, 27 Dec 2022 19:08:27 GMT',
      server: 'uvicorn',
      'content-length': '21',
      'content-type': 'text/plain; charset=utf-8',
      connection: 'close'
    },
    config: {
      transitional: [Object],
      adapter: [Array],
      transformRequest: [Array],
      transformResponse: [Array],
      timeout: 0,
      xsrfCookieName: 'XSRF-TOKEN',
      xsrfHeaderName: 'X-XSRF-TOKEN',
      maxContentLength: -1,
      maxBodyLength: -1,
      env: [Object],
      validateStatus: [Function: validateStatus],
      headers: [AxiosHeaders],
      method: 'post',
      url: 'http://xx.8x.12.10x:200xx/generate',
      data: '{"prompt":"Write an image description of a NASA rocket launch"}'
    },
    request: <ref *1> ClientRequest {
      _events: [Object: null prototype],
      _eventsCount: 7,
      _maxListeners: undefined,
      outputData: [],
      outputSize: 0,
      writable: true,
      destroyed: false,
      _last: true,
      chunkedEncoding: false,
      shouldKeepAlive: false,
      maxRequestsOnConnectionReached: false,
      _defaultKeepAlive: true,
      useChunkedEncodingByDefault: true,
      sendDate: false,
      _removedConnection: false,
      _removedContLen: false,
      _removedTE: false,
      _contentLength: null,
      _hasBody: true,
      _trailer: '',
      finished: true,
      _headerSent: true,
      _closed: false,
      socket: [Socket],
      _header: 'POST /generate HTTP/1.1\r\n' +
        'Accept: application/json, text/plain, */*\r\n' +
        'Content-Type: application/json\r\n' +
        'User-Agent: axios/1.2.1\r\n' +
        'Content-Length: 63\r\n' +
        'Accept-Encoding: gzip, compress, deflate, br\r\n' +
        'Host: xx.8x.12.10x:200xx\r\n' +
        'Connection: close\r\n' +
        '\r\n',
      _keepAliveTimeout: 0,
      _onPendingData: [Function: nop],
      agent: [Agent],
      socketPath: undefined,
      method: 'POST',
      maxHeaderSize: undefined,
      insecureHTTPParser: undefined,
      path: '/generate',
      _ended: true,
      res: [IncomingMessage],
      aborted: false,
      timeoutCb: null,
      upgradeOrConnect: false,
      parser: null,
      maxHeadersCount: null,
      reusedSocket: false,
      host: 'xx.8x.12.10x:200xx',
      protocol: 'http:',
      _redirectable: [Writable],
      [Symbol(kCapture)]: false,
      [Symbol(kNeedDrain)]: false,
      [Symbol(corked)]: 0,
      [Symbol(kOutHeaders)]: [Object: null prototype]
    },
    data: 'Internal Server Error'
  }
}

jp555soul avatar Dec 27 '22 19:12 jp555soul

Hi @jp555soul you can checkout the logs with the command docker compose logs. If it doesn't give a clue for what's going wrong, you can share the request you're trying with I'll have a look.

monatis avatar Dec 28 '22 07:12 monatis

Hey @monatis TY!

Output from docker logs below.

Based on some searching I'm not seeing a clear cut solution. Also attached a screenshot of the hardware to double-check its not a memory issue.

Screenshot 2022-12-28 at 10 33 04 AM

stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858046: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 1 Chunks of size 176947200 totalling 168.75MiB
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858144: I tensorflow/core/common_runtime/bfc_allocator.cc:1097] 2 Chunks of size 8589934592 totalling 16.00GiB
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858244: I tensorflow/core/common_runtime/bfc_allocator.cc:1101] Sum Total of in-use chunks: 20.46GiB
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858337: I tensorflow/core/common_runtime/bfc_allocator.cc:1103] total_region_allocated_bytes_: 23381475328 memory_limit_: 23381475328 available bytes: 0 curr_region_allocation_bytes_: 46762950656
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858366: I tensorflow/core/common_runtime/bfc_allocator.cc:1109] Stats:
stable-diffusion-tf-docker-app-1  | Limit:                     23381475328
stable-diffusion-tf-docker-app-1  | InUse:                     21972676864
stable-diffusion-tf-docker-app-1  | MaxInUse:                  21972777472
stable-diffusion-tf-docker-app-1  | NumAllocs:                        6794
stable-diffusion-tf-docker-app-1  | MaxAllocSize:               8589934592
stable-diffusion-tf-docker-app-1  | Reserved:                            0
stable-diffusion-tf-docker-app-1  | PeakReserved:                        0
stable-diffusion-tf-docker-app-1  | LargestFreeBlock:                    0
stable-diffusion-tf-docker-app-1  |
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858497: W tensorflow/core/common_runtime/bfc_allocator.cc:491] ***********************************************************************************************_____
stable-diffusion-tf-docker-app-1  | 2022-12-27 19:08:37.858619: W tensorflow/core/framework/op_kernel.cc:1780] OP_REQUIRES failed at softmax_op_gpu.cu.cc:222 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[1,8,16384,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
stable-diffusion-tf-docker-app-1  | INFO:     76.90.83.17:54975 - "POST /generate HTTP/1.1" 500 Internal Server Error
 49 981:   0%|          | 0/50 [00:10<?, ?it/s]
stable-diffusion-tf-docker-app-1  | ERROR:    Exception in ASGI application
stable-diffusion-tf-docker-app-1  | Traceback (most recent call last):
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/uvicorn/protocols/http/httptools_impl.py", line 419, in run_asgi
stable-diffusion-tf-docker-app-1  |     result = await app(  # type: ignore[func-returns-value]
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/uvicorn/middleware/proxy_headers.py", line 78, in __call__
stable-diffusion-tf-docker-app-1  |     return await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/fastapi/applications.py", line 270, in __call__
stable-diffusion-tf-docker-app-1  |     await super().__call__(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/applications.py", line 124, in __call__
stable-diffusion-tf-docker-app-1  |     await self.middleware_stack(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/errors.py", line 184, in __call__
stable-diffusion-tf-docker-app-1  |     raise exc
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/errors.py", line 162, in __call__
stable-diffusion-tf-docker-app-1  |     await self.app(scope, receive, _send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/exceptions.py", line 79, in __call__
stable-diffusion-tf-docker-app-1  |     raise exc
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/middleware/exceptions.py", line 68, in __call__
stable-diffusion-tf-docker-app-1  |     await self.app(scope, receive, sender)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__
stable-diffusion-tf-docker-app-1  |     raise e
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__
stable-diffusion-tf-docker-app-1  |     await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 706, in __call__
stable-diffusion-tf-docker-app-1  |     await route.handle(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 276, in handle
stable-diffusion-tf-docker-app-1  |     await self.app(scope, receive, send)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/routing.py", line 66, in app
stable-diffusion-tf-docker-app-1  |     response = await func(request)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/fastapi/routing.py", line 235, in app
stable-diffusion-tf-docker-app-1  |     raw_response = await run_endpoint_function(
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/fastapi/routing.py", line 163, in run_endpoint_function
stable-diffusion-tf-docker-app-1  |     return await run_in_threadpool(dependant.call, **values)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/starlette/concurrency.py", line 41, in run_in_threadpool
stable-diffusion-tf-docker-app-1  |     return await anyio.to_thread.run_sync(func, *args)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/anyio/to_thread.py", line 31, in run_sync
stable-diffusion-tf-docker-app-1  |     return await get_asynclib().run_sync_in_worker_thread(
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 937, in run_sync_in_worker_thread
stable-diffusion-tf-docker-app-1  |     return await future
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 867, in run
stable-diffusion-tf-docker-app-1  |     result = context.run(func, *args)
stable-diffusion-tf-docker-app-1  |   File "/app/./app.py", line 45, in generate
stable-diffusion-tf-docker-app-1  |     img = generator.generate(req.prompt, num_steps=req.steps, unconditional_guidance_scale=req.scale, temperature=1, batch_size=1, seed=req.seed)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 116, in generate
stable-diffusion-tf-docker-app-1  |     e_t = self.get_model_output(
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 190, in get_model_output
stable-diffusion-tf-docker-app-1  |     unconditional_latent = self.diffusion_model.predict_on_batch(
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2474, in predict_on_batch
stable-diffusion-tf-docker-app-1  |     outputs = self.predict_function(iterator)
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/traceback_utils.py", line 153, in error_handler
stable-diffusion-tf-docker-app-1  |     raise e.with_traceback(filtered_tb) from None
stable-diffusion-tf-docker-app-1  |   File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py", line 54, in quick_execute
stable-diffusion-tf-docker-app-1  |     tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
stable-diffusion-tf-docker-app-1  | tensorflow.python.framework.errors_impl.ResourceExhaustedError: Graph execution error:
stable-diffusion-tf-docker-app-1  |
stable-diffusion-tf-docker-app-1  | Detected at node 'model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax' defined at (most recent call last):
stable-diffusion-tf-docker-app-1  |     File "/usr/lib/python3.8/threading.py", line 890, in _bootstrap
stable-diffusion-tf-docker-app-1  |       self._bootstrap_inner()
stable-diffusion-tf-docker-app-1  |     File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
stable-diffusion-tf-docker-app-1  |       self.run()
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/anyio/_backends/_asyncio.py", line 867, in run
stable-diffusion-tf-docker-app-1  |       result = context.run(func, *args)
stable-diffusion-tf-docker-app-1  |     File "/app/./app.py", line 45, in generate
stable-diffusion-tf-docker-app-1  |       img = generator.generate(req.prompt, num_steps=req.steps, unconditional_guidance_scale=req.scale, temperature=1, batch_size=1, seed=req.seed)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 116, in generate
stable-diffusion-tf-docker-app-1  |       e_t = self.get_model_output(
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/stable_diffusion.py", line 190, in get_model_output
stable-diffusion-tf-docker-app-1  |       unconditional_latent = self.diffusion_model.predict_on_batch(
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2474, in predict_on_batch
stable-diffusion-tf-docker-app-1  |       outputs = self.predict_function(iterator)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2041, in predict_function
stable-diffusion-tf-docker-app-1  |       return step_function(self, iterator)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2027, in step_function
stable-diffusion-tf-docker-app-1  |       outputs = model.distribute_strategy.run(run_step, args=(data,))
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 2015, in run_step
stable-diffusion-tf-docker-app-1  |       outputs = model.predict_step(data)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1983, in predict_step
stable-diffusion-tf-docker-app-1  |       return self(x, training=False)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 557, in __call__
stable-diffusion-tf-docker-app-1  |       return super().__call__(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1  |       outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py", line 510, in call
stable-diffusion-tf-docker-app-1  |       return self._run_internal_graph(inputs, training=training, mask=mask)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/functional.py", line 667, in _run_internal_graph
stable-diffusion-tf-docker-app-1  |       outputs = node.layer(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 557, in __call__
stable-diffusion-tf-docker-app-1  |       return super().__call__(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1  |       outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 207, in call
stable-diffusion-tf-docker-app-1  |       for b in self.input_blocks:
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 208, in call
stable-diffusion-tf-docker-app-1  |       for layer in b:
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 209, in call
stable-diffusion-tf-docker-app-1  |       x = apply(x, layer)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 198, in apply
stable-diffusion-tf-docker-app-1  |       if isinstance(layer, ResBlock):
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 200, in apply
stable-diffusion-tf-docker-app-1  |       elif isinstance(layer, SpatialTransformer):
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 201, in apply
stable-diffusion-tf-docker-app-1  |       x = layer([x, context])
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1  |       outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 112, in call
stable-diffusion-tf-docker-app-1  |       for block in self.transformer_blocks:
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 113, in call
stable-diffusion-tf-docker-app-1  |       x = block([x, context])
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1  |       outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 91, in call
stable-diffusion-tf-docker-app-1  |       x = self.attn1([self.norm1(x)]) + x
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 65, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/engine/base_layer.py", line 1097, in __call__
stable-diffusion-tf-docker-app-1  |       outputs = call_fn(inputs, *args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 96, in error_handler
stable-diffusion-tf-docker-app-1  |       return fn(*args, **kwargs)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/stable_diffusion_tf/diffusion_model.py", line 67, in call
stable-diffusion-tf-docker-app-1  |       weights = keras.activations.softmax(score)  # (bs, num_heads, time, time)
stable-diffusion-tf-docker-app-1  |     File "/usr/local/lib/python3.8/dist-packages/keras/activations.py", line 84, in softmax
stable-diffusion-tf-docker-app-1  |       output = tf.nn.softmax(x, axis=axis)
stable-diffusion-tf-docker-app-1  | Node: 'model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax'
stable-diffusion-tf-docker-app-1  | OOM when allocating tensor with shape[1,8,16384,16384] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
stable-diffusion-tf-docker-app-1  | 	 [[{{node model_1/u_net_model/spatial_transformer/basic_transformer_block/cross_attention/Softmax}}]]
stable-diffusion-tf-docker-app-1  | Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
stable-diffusion-tf-docker-app-1  |  [Op:__inference_predict_function_40478]
root@c00ecfce-f3eb-4261-a178-e3461c736aec:/home/user/stable-diffusion-tf-docker#

jp555soul avatar Dec 28 '22 18:12 jp555soul