ttide_py
ttide_py copied to clipboard
Is this right?
I was following the example from README.md
with the code snippet below:
import ttide as tt
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(1001)
m2_freq = 2 * np.pi / 12.42
elev = 5 * np.cos(m2_freq * t)
tfit_e = tt.t_tide(elev)
elev_fit = tfit_e(t)
fig, ax = plt.subplots(1, 2)
ax[0].plot(t, elev)
ax[0].plot(t, elev_fit)
ax[0].set(xlim = [0, 200])
ax[1].scatter(elev, elev_fit)
which returns
-----------------------------------
nobs = 1001
ngood = 1001
record length (days) = 41.71
rayleigh criterion = 1.0
Phases at central time
x0= 3.66e-06 xtrend= 0
var(data)= 12.53 var(prediction)= 12.53 var(residual)= 0.00
var(prediction)/var(data) (%) = 100.0
tidal amplitude and phase with 95 % CI estimates
tide freq amp amp_err pha pha_err snr
MM 0.0015122 0.0004 0.000 89.79 62.58 1.3
MSF 0.0028219 0.0001 0.000 266.87 146.24 0.16
ALP1 0.0343966 0.0004 0.000 269.34 65.68 1.7
* 2Q1 0.0357064 0.0004 0.000 88.36 49.59 2
Q1 0.0372185 0.0003 0.000 89.82 79.73 0.79
O1 0.0387307 0.0004 0.000 268.05 52.61 1.7
NO1 0.0402686 0.0004 0.000 269.19 55.97 1.8
K1 0.0417807 0.0004 0.000 87.64 54.23 1
* J1 0.0432929 0.0005 0.000 88.85 51.30 2.8
OO1 0.0448308 0.0003 0.000 266.97 105.86 0.55
* UPS1 0.0463430 0.0006 0.000 268.43 38.52 3.5
EPS2 0.0761773 0.0009 0.005 267.80 230.52 0.031
MU2 0.0776895 0.0053 0.007 87.30 93.51 0.51
N2 0.0789992 0.0017 0.005 267.09 175.44 0.1
* M2 0.0805114 4.9998 0.009 267.25 0.10 3.2e+05
L2 0.0820236 0.0016 0.006 87.01 218.48 0.072
S2 0.0833333 0.0057 0.007 267.14 79.64 0.6
ETA2 0.0850736 0.0015 0.006 266.89 194.46 0.061
MO3 0.1192421 0.0002 0.000 264.35 40.57 1.8
* M3 0.1207671 0.0003 0.000 87.16 23.69 5.4
* MK3 0.1222921 0.0003 0.000 85.64 25.06 6
SK3 0.1251141 0.0001 0.000 263.45 61.83 0.83
* MN4 0.1595106 0.0002 0.000 264.90 25.92 3.7
M4 0.1610228 0.0000 0.000 147.67 231.93 0.017
SN4 0.1623326 0.0001 0.000 83.74 34.03 1.9
MS4 0.1638447 0.0001 0.000 272.36 85.44 0.68
* S4 0.1666667 0.0001 0.000 87.31 33.52 2.8
* 2MK5 0.2028035 0.0001 0.000 89.11 36.20 2.6
* 2SK5 0.2084474 0.0001 0.000 84.70 22.29 5.6
2MN6 0.2400221 0.0000 0.000 278.41 104.74 0.56
* M6 0.2415342 0.0001 0.000 266.15 32.15 4
* 2MS6 0.2443561 0.0001 0.000 83.27 34.68 2.6
2SM6 0.2471781 0.0000 0.000 258.44 68.99 0.97
* 3MK7 0.2833149 0.0000 0.000 261.56 16.23 19
* M8 0.3220456 0.0000 0.000 28.15 5.34 83
It doesn't seem like a nice fit. What am I doing wrong?
Is it the same issue as https://github.com/moflaher/ttide_py/issues/17 ?
Hi, Sorry. I just noticed that. Is there a reason why the prediction doesn't do that automatically?