facechain
facechain copied to clipboard
ValueError: The deprecation tuple ('LoRAAttnProcessor' ...
After all the errors of missing imports, I am near the goal of running a training, but this error stopped me. I don't really get what's the problem.
I tried removing the deprecation function the logs mentioned, but nothing changed. What's the deal here?
Console Error
Generating train split: 3 examples [00:00, 600.10 examples/s]
02/08/2024 20:08:15 - INFO - __main__ - ***** Running training *****
02/08/2024 20:08:15 - INFO - __main__ - Num examples = 3
02/08/2024 20:08:15 - INFO - __main__ - Num Epochs = 200
02/08/2024 20:08:15 - INFO - __main__ - Instantaneous batch size per device = 1
02/08/2024 20:08:15 - INFO - __main__ - Total train batch size (w. parallel, distributed & accumulation) = 1
02/08/2024 20:08:15 - INFO - __main__ - Gradient Accumulation steps = 1
02/08/2024 20:08:15 - INFO - __main__ - Total optimization steps = 600
Steps: 0%| | 0/600 [00:00<?, ?it/s]Traceback (most recent call last):
File "D:\dev\A1111\stable-diffusion-webui\extensions\facechain\facechain\train_text_to_image_lora_sdxl.py", line 1352, in <module>
main()
File "D:\dev\A1111\stable-diffusion-webui\extensions\facechain\facechain\train_text_to_image_lora_sdxl.py", line 1142, in main
model_pred = unet(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\unets\unet_2d_condition.py", line 1121, in forward
sample, res_samples = downsample_block(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\unets\unet_2d_blocks.py", line 1199, in forward
hidden_states = attn(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\transformers\transformer_2d.py", line 391, in forward
hidden_states = block(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\attention.py", line 335, in forward
attn_output = self.attn1(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\attention_processor.py", line 512, in forward
return self.processor(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\models\attention_processor.py", line 1856, in __call__
deprecate(
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\site-packages\diffusers\utils\deprecation_utils.py", line 18, in deprecate
raise ValueError(
ValueError: The deprecation tuple ('LoRAAttnProcessor', '0.26.0', 'Make sure use AttnProcessor instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`') should be removed since diffusers' version 0.26.2 is >= 0.26.0
Steps: 0%| | 0/600 [00:04<?, ?it/s]
Error executing the command: Command '['python', 'D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain/facechain/train_text_to_image_lora_sdxl.py', '--pretrained_model_name_or_path=AI-ModelScope/stable-diffusion-xl-base-1.0', '--revision=v1.0.9', '--sub_path=', '--output_dataset_name=D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain\\worker_data\\qw\\training_data\\AI-ModelScope/stable-diffusion-xl-base-1.0\\alissa-test3', '--caption_column=text', '--resolution=512', '--random_flip', '--train_batch_size=1', '--num_train_epochs=200', '--checkpointing_steps=5000', '--learning_rate=1.5e-04', '--lr_scheduler=cosine', '--lr_warmup_steps=0', '--seed=42', '--output_dir=D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain\\worker_data\\qw\\AI-ModelScope/stable-diffusion-xl-base-1.0\\alissa-test3', '--lora_r=4', '--lora_alpha=32', '--lora_text_encoder_r=32', '--lora_text_encoder_alpha=32']' returned non-zero exit status 1.
Traceback (most recent call last):
File "D:\dev\A1111\stable-diffusion-webui\extensions\facechain\app.py", line 147, in train_lora_fn
subprocess.run(command, check=True)
File "C:\Users\fract\AppData\Local\Programs\Python\Python310\lib\subprocess.py", line 524, in run
raise CalledProcessError(retcode, process.args,
subprocess.CalledProcessError: Command '['python', 'D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain/facechain/train_text_to_image_lora_sdxl.py', '--pretrained_model_name_or_path=AI-ModelScope/stable-diffusion-xl-base-1.0', '--revision=v1.0.9', '--sub_path=', '--output_dataset_name=D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain\\worker_data\\qw\\training_data\\AI-ModelScope/stable-diffusion-xl-base-1.0\\alissa-test3', '--caption_column=text', '--resolution=512', '--random_flip', '--train_batch_size=1', '--num_train_epochs=200', '--checkpointing_steps=5000', '--learning_rate=1.5e-04', '--lr_scheduler=cosine', '--lr_warmup_steps=0', '--seed=42', '--output_dir=D:\\dev\\A1111\\stable-diffusion-webui\\extensions\\facechain\\worker_data\\qw\\AI-ModelScope/stable-diffusion-xl-base-1.0\\alissa-test3', '--lora_r=4', '--lora_alpha=32', '--lora_text_encoder_r=32', '--lora_text_encoder_alpha=32']' returned non-zero exit status 1.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\gradio\routes.py", line 488, in run_predict
output = await app.get_blocks().process_api(
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1431, in process_api
result = await self.call_function(
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\gradio\blocks.py", line 1103, in call_function
prediction = await anyio.to_thread.run_sync(
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\anyio\to_thread.py", line 33, in run_sync
return await get_asynclib().run_sync_in_worker_thread(
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 877, in run_sync_in_worker_thread
return await future
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\anyio\_backends\_asyncio.py", line 807, in run
result = context.run(func, *args)
File "D:\dev\A1111\stable-diffusion-webui\venv\lib\site-packages\gradio\utils.py", line 707, in wrapper
response = f(*args, **kwargs)
File "D:\dev\A1111\stable-diffusion-webui\extensions\facechain\app.py", line 804, in run
train_lora_fn(base_model_path=base_model_path,
File "D:\dev\A1111\stable-diffusion-webui\extensions\facechain\app.py", line 150, in train_lora_fn
raise gr.Error("训练失败 (Training failed)")
gradio.exceptions.Error: '训练失败 (Training failed)'
hello, any progess here? Have tried to downgrade the diffusers version to 0.25.1 and modify the LoRAAttnProcessor, but still not working
hello, any progess here? Have tried to downgrade the diffusers version to 0.25.1 and modify the LoRAAttnProcessor, but still not working
https://github.com/d8ahazard/sd_dreambooth_extension/issues/1456#issuecomment-1932484747
hello, any progess here? Have tried to downgrade the diffusers version to 0.25.1 and modify the LoRAAttnProcessor, but still not working
Thks , this works for me. By the way, I had made some other changes to make the model work. Hope it helps:
1, comment out line 17-21 of {xx}/derecation_utils.py 2, update transformers lib to the main branch 3, comment out the unet/vae.requires_grad_() of facechain/train_text_to_image_lora.py, load the pretrained adapter to have them in the trainable model
please try out the newest train-free, 10s inference version facechain-fact.