在设置微调和推理的图像尺寸参数时,是否有什么特殊的约定。
在训练 lora 时,高度设置为 1024、宽度设置为 560 会报错,推理也是这样设置的,也会报错。
但如果同时设置 1024,就不会出错。
具体信息如下
Epoch 0: 0%| | 0/250 [00:00<?, ?it/s]Traceback (most recent call last):
File "examples/train/kolors/train_kolors_lora.py", line 77, in
launch_training_task(model, args)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/trainers/text_to_image.py", line 244, in launch_training_task
trainer.fit(model=model, train_dataloaders=train_loader)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 543, in fit
call._call_and_handle_interrupt(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 43, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/launchers/subprocess_script.py", line 105, in launch
return function(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 579, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 986, in _run
results = self._run_stage()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 1030, in _run_stage
self.fit_loop.run()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/fit_loop.py", line 205, in run
self.advance()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/fit_loop.py", line 363, in advance
self.epoch_loop.run(self._data_fetcher)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/training_epoch_loop.py", line 140, in run
self.advance(data_fetcher)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/training_epoch_loop.py", line 250, in advance
batch_output = self.automatic_optimization.run(trainer.optimizers[0], batch_idx, kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 190, in run
self._optimizer_step(batch_idx, closure)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 268, in _optimizer_step
call._call_lightning_module_hook(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 159, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/core/module.py", line 1308, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/core/optimizer.py", line 153, in step
step_output = self._strategy.optimizer_step(self._optimizer, closure, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/ddp.py", line 270, in optimizer_step
optimizer_output = super().optimizer_step(optimizer, closure, model, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 238, in optimizer_step
return self.precision_plugin.optimizer_step(optimizer, model=model, closure=closure, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/plugins/precision/amp.py", line 77, in optimizer_step
closure_result = closure()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 144, in call
self._result = self.closure(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 129, in closure
step_output = self._step_fn()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 317, in _training_step
training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values())
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 311, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 389, in training_step
return self._forward_redirection(self.model, self.lightning_module, "training_step", *args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 640, in call
wrapper_output = wrapper_module(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1156, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1110, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0]) # type: ignore[index]
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 633, in wrapped_forward
out = method(_args, **_kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/trainers/text_to_image.py", line 64, in training_step
noise_pred = self.pipe.denoising_model()(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/models/sdxl_unet.py", line 126, in forward
hidden_states, time_emb, text_emb, res_stack = block(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/models/sd_unet.py", line 226, in forward
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 36 but got size 35 for tensor number 1 in the list.
Traceback (most recent call last):
File "/workspace/luoan/DiffSynth-Studio-main/examples/train/kolors/train_kolors_lora.py", line 77, in
launch_training_task(model, args)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/trainers/text_to_image.py", line 244, in launch_training_task
trainer.fit(model=model, train_dataloaders=train_loader)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 543, in fit
call._call_and_handle_interrupt(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 43, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/launchers/subprocess_script.py", line 105, in launch
return function(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 579, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 986, in _run
results = self._run_stage()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/trainer.py", line 1030, in _run_stage
self.fit_loop.run()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/fit_loop.py", line 205, in run
self.advance()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/fit_loop.py", line 363, in advance
self.epoch_loop.run(self._data_fetcher)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/training_epoch_loop.py", line 140, in run
self.advance(data_fetcher)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/training_epoch_loop.py", line 250, in advance
batch_output = self.automatic_optimization.run(trainer.optimizers[0], batch_idx, kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 190, in run
self._optimizer_step(batch_idx, closure)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 268, in _optimizer_step
call._call_lightning_module_hook(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 159, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/core/module.py", line 1308, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/core/optimizer.py", line 153, in step
step_output = self._strategy.optimizer_step(self._optimizer, closure, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/ddp.py", line 270, in optimizer_step
optimizer_output = super().optimizer_step(optimizer, closure, model, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 238, in optimizer_step
return self.precision_plugin.optimizer_step(optimizer, model=model, closure=closure, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/plugins/precision/amp.py", line 77, in optimizer_step
closure_result = closure()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 144, in call
self._result = self.closure(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 129, in closure
step_output = self._step_fn()
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/loops/optimization/automatic.py", line 317, in _training_step
training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values())
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/trainer/call.py", line 311, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 389, in training_step
return self._forward_redirection(self.model, self.lightning_module, "training_step", *args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 640, in call
wrapper_output = wrapper_module(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1156, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1110, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0]) # type: ignore[index]
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(args, **kwargs)
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/lightning/pytorch/strategies/strategy.py", line 633, in wrapped_forward
out = method(_args, **_kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/trainers/text_to_image.py", line 64, in training_step
noise_pred = self.pipe.denoising_model()(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/models/sdxl_unet.py", line 126, in forward
hidden_states, time_emb, text_emb, res_stack = block(
File "/mnt/10101/staryea/anaconda3/envs/scepter/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/workspace/luoan/DiffSynth-Studio-main/diffsynth/models/sd_unet.py", line 226, in forward
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 36 but got size 35 for tensor number 1 in the list.