modAL
modAL copied to clipboard
Fine-tuning a keras model using active learning
Hi there,
I would like to apply active learning to a keras model trained with another script.
The model, with architecture, is stored in a .h5 file. I followed the keras example, but in my case I want to set the initial training set to None since my only aim is to get the selected indices for new samples.
I get the following error:
AttributeError: 'KerasClassifier' object has no attribute 'model'
Any help would be much appreciated.
from keras.wrappers.scikit_learn import KerasClassifier
from modAL.uncertainty import uncertainty_sampling
from modAL.models import ActiveLearner
def get_model():
model = keras.models.load_model(model_path)
return model
classifier = KerasClassifier(get_model)
# initialize ActiveLearner
learner = ActiveLearner(
estimator=classifier,
verbose=1
)
X_pool = get_image_data_to_ndarray(folder_path=folder_path, img_size=img_size)
query_idx, query_instance = learner.query(X_pool, n_instances=100, verbose=0)
According to comments in the Keras source code, the scikit-learn wrapper is deprecated and the scikeras external lib should be used. (As I was not following Keras development, this surprised me as well, I think it is a recent decision.)
Can you try using scikeras?
Just a side-note, I am planning on adding custom minimal wrappers that will make sure things like this doesn't happen in the future.
I think you can also write a customer Class, whose structure is just like sklearn model:
For example a transferlearning model using Keras could be:
class TransferLearning():
"""
pure active transfer learning
"""
def __init__(self) -> None:
# load the pre-trained encoder
model_path = "./Encoder_models/27_02_2022__23_06_08"
base_model = keras.models.load_model(model_path)
# fix the non-trainable part
self.fixed_model = tf.keras.models.Model(inputs=base_model.input, outputs=base_model.get_layer("flatten_12").output)
self.fixed_model.trainable = False
self.feature_num = base_model.get_layer("feature").output.get_shape().as_list()[1]
def fit(self, X, y):
# add the trainable part on the top
self.extractor = Sequential()
self.extractor.add(self.fixed_model)
self.extractor.add(Dense(self.feature_num, activation='relu', name="feature"))
self.extractor.add(Dense(y.shape[1], activation='softmax', name="prob"))
self.extractor.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# fine-tune the extractor
self.extractor.fit(X, y, epochs=1, batch_size=32, verbose=0)
def predict(self, X):
return self.extractor.predict(X)
def score(self, X, y):
_, accuracy = self.extractor.evaluate(X, y, verbose=0)
return accuracy
def predict_proba(self, X):
predictor = Model(inputs=self.extractor.input, outputs=self.extractor.get_layer("prob").output)
return predictor.predict(X)