mne-features
mne-features copied to clipboard
MNE-Features software for extracting features from multivariate time series
MNE-Features
|GitHub Actions|_ |Codecov|_
.. |GitHub Actions| image:: https://github.com/mne-tools/mne-features/actions/workflows/main.yml/badge.svg .. _GitHub Actions: https://github.com/mne-tools/mne-features/actions/workflows/main.yml
.. |Codecov| image:: http://codecov.io/github/mne-tools/mne-features/coverage.svg?branch=master .. _Codecov: http://codecov.io/github/mne-tools/mne-features?branch=master
This repository provides code for feature extraction with M/EEG data.
The documentation of the MNE-Features module is available at: documentation <https://mne-tools.github.io/mne-features/index.html>
_.
Installation
To install the package, the simplest way is to use pip
to get the latest release::
$ pip install mne-features
Or if you prefer conda
::
$ conda install --channel=conda-forge mne-features
Or to get the latest version of the code::
$ pip install git+https://github.com/mne-tools/mne-features.git#egg=mne_features
Dependencies
These are the dependencies to use MNE-Features:
- numpy (>=1.17)
- matplotlib (>=1.5)
- scipy (>=1.0)
- numba (>=0.46.0)
- llvmlite (>=0.30)
- scikit-learn (>=0.21)
- mne (>=0.18.2)
- PyWavelets (>=0.5.2)
- pandas (>=0.25)
Cite
If you use this code in your project, please cite::
Jean-Baptiste SCHIRATTI, Jean-Eudes LE DOUGET, Michel LE VAN QUYEN, Slim ESSID, Alexandre GRAMFORT,
"An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings"
Proc. IEEE ICASSP Conf. 2018