Hello, thank you very much for the work you've done. I encountered a problem while running it; could you please tell me what this issue is and if there is a way to resolve it?
(upnerf) ubuntu@ml-ubuntu20-04-desktop-v1-0-108gb-100m:/data/up_nerf/UP-NeRF$ python train.py --config configs/custom.yaml
Setting up [LPIPS] perceptual loss: trunk [alex], v[0.1], spatial [off]
/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
warnings.warn(
/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or None for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=AlexNet_Weights.IMAGENET1K_V1. You can also use weights=AlexNet_Weights.DEFAULT to get the most up-to-date weights.
warnings.warn(msg)
Downloading: "https://download.pytorch.org/models/alexnet-owt-7be5be79.pth" to /home/ubuntu/.cache/torch/hub/checkpoints/alexnet-owt-7be5be79.pth
100%|█████████████████████████████████████████████| 233M/233M [00:28<00:00, 8.43MB/s]
Loading model from: /home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/lpips/weights/v0.1/alex.pth
wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: 2
wandb: You chose 'Use an existing W&B account'
wandb: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)
wandb: You can find your API key in your browser here: https://wandb.ai/authorize
wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit:
wandb: Appending key for api.wandb.ai to your netrc file: /home/ubuntu/.netrc
wandb: Tracking run with wandb version 0.17.5
wandb: Run data is saved locally in ./wandb/run-20240805_211648-qj7uf3qy
wandb: Run wandb offline to turn off syncing.
wandb: Syncing run UP-NeRF
wandb: ⭐️ View project at https://wandb.ai/1uuuu-/custom_pose_optimize
wandb: 🚀 View run at https://wandb.ai/1uuuuu-/custom_pose_optimize/runs/qj7uf3qy
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
You are using a CUDA device ('NVIDIA GeForce RTX 4090') that has Tensor Cores. To properly utilize them, you should set torch.set_float32_matmul_precision('medium' | 'high') which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
Epoch 21: 27%|▎| 39/145 [00:15<00:41, 2.53it/s, v_num=f3qy, train/l_depth_c=4.65e-6, tpose alignment is not converged
Traceback (most recent call last):
File "train.py", line 91, in
main(parse_args(parser))
File "train.py", line 79, in main
trainer.fit(system, ckpt_path=hparams["resume_ckpt"])
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 608, in fit
call._call_and_handle_interrupt(
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/call.py", line 38, in _call_and_handle_interrupt
return trainer_fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 650, in _fit_impl
self._run(model, ckpt_path=self.ckpt_path)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1103, in _run
results = self._run_stage()
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1182, in _run_stage
self._run_train()
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1205, in _run_train
self.fit_loop.run()
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/fit_loop.py", line 267, in advance
self._outputs = self.epoch_loop.run(self._data_fetcher)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 213, in advance
batch_output = self.batch_loop.run(kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/batch/training_batch_loop.py", line 90, in advance
outputs = self.manual_loop.run(kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/loop.py", line 199, in run
self.advance(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/loops/optimization/manual_loop.py", line 110, in advance
training_step_output = self.trainer._call_strategy_hook("training_step", *kwargs.values())
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1485, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/pytorch_lightning/strategies/strategy.py", line 378, in training_step
return self.model.training_step(*args, **kwargs)
File "/data/up_nerf/UP-NeRF/models/nerf_system.py", line 221, in training_step
self.log_pose()
File "/home/ubuntu/anaconda3/envs/upnerf/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/data/up_nerf/UP-NeRF/models/nerf_system.py", line 441, in log_pose
init_poses[pose_idx], gt_poses[pose_idx]
IndexError: index 2 is out of bounds for dimension 0 with size 2
wandb: / 37.613 MB of 37.613 MB uploaded
wandb: Run history:
wandb: epoch ▁▁▁▁▂▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▄▅▅▅▅▅▆▆▆▆▆▆▇▇▇▇▇▇██
wandb: lr ████▇▇▇▇▇▆▆▆▆▆▆▅▅▅▅▅▄▄▄▄▄▄▃▃▃▃▃▂▂▂▂▂▂▁▁▁
wandb: lr_pose ████▇▇▇▇▇▆▆▆▆▆▆▅▅▅▅▅▄▄▄▄▄▄▃▃▃▃▃▂▂▂▂▂▂▁▁▁
wandb: train/l_depth_c █▄▃▂▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/l_depth_f █▄▄▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/l_feat_c ██▇▇▇▄▄▃▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/l_feat_f ██▇▆█▄▄▃▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/loss █▇▆▅▆▃▃▂▂▂▂▂▂▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: train/psnr ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: trainer/global_step ▁▁▁▁▂▂▂▂▂▃▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███
wandb: val/loss █▅▄▄▃▃▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb: val/psnr ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wandb:
wandb: Run summary:
wandb: epoch 21
wandb: lr 0.00049
wandb: lr_pose 0.00195
wandb: train/l_depth_c 0.0
wandb: train/l_depth_f 0.0
wandb: train/l_feat_c 0.00011
wandb: train/l_feat_f 0.00011
wandb: train/loss 0.00024
wandb: train/psnr 0.0
wandb: trainer/global_step 2995
wandb: val/loss 0.00021
wandb: val/psnr 0.0
wandb:
wandb: 🚀 View run UP-NeRF at: https://wandb.ai/1uuuuu-/custom_pose_optimize/runs/qj7uf3qy
wandb: ⭐️ View project at: https://wandb.ai/1uuuuu-/custom_pose_optimize
wandb: Synced 6 W&B file(s), 774 media file(s), 2 artifact file(s) and 0 other file(s)
wandb: Find logs at: ./wandb/run-20240805_211648-qj7uf3qy/logs
wandb: WARNING The new W&B backend becomes opt-out in version 0.18.0; try it out with wandb.require("core")! See https://wandb.me/wandb-core for more information.